IT MANUALE DI ISTRUZIONE PER IMPIANTO DI TAGLIO AL PLASMA EN NSTRUCTION MANUAL FOR PLASMA CUTTING SYSTEM

PAG. 3 PAGE 45

Parti di ricambio e schema elettrico Spare parts and electrical schematic Ersatzteile und Schaltplan Pièces détachées et schéma électrique Partes de repuesto y esquema eléctrico Partes sobressalentes e esquema eléctrico Varaosat ja sähkökaavio

Pagg. Sid.: 85 ÷ 111

CEBORA S.p.A - Via Andrea Costa, 24 -40057 Cadriano di Granarolo - BOLOGNA - Italy Tel. +39.051.765.000 - Fax. +39.051.765.222 www.cebora.it - e-mail: cebora@cebora.it

- IT L'USO DI CONSUMABILI NON ORIGINALI CEBORA FA AUTOMATICAMENTE DECADERE OGNI GARANZIA E/O RESPONSABILITÀ SU GENERATORI E TORCE PER IL TAGLIO AL PLASMA.
- EN THE USE OF NON-GENUINE CEBORA CONSUMABLES AUTOMATICALLY VOIDS ANY WARRANTY AND/OR RESPONSIBILITY ON PLASMA CUTTING POWER SOURCES AND TORCHES
- DE DIE GARANTIE UND/ODER HAFTUNG FÜR DIE STROMQUELLEN UND BRENNER ZUM PLASMASCHNEIDEN VERFÄLLT AUTOMATISCH, WENN ANDERE ALS DIE ORIGINAL-VERBRAUCHSTEILE VON CEBORA VERWENDET WERDEN.
- FR L'UTILISATION DE CONSOMMABLES NON ORIGINAUX CEBORA REND AUTOMATIQUEMENT CADUQUE TOUTE GARANTIE ET/OU RESPONSABILITÉ CONCERNANT LES GÉNÉRATEURS ET LES TORCHES POUR LE DÉCOUPAGE PLASMA
- ES EL USO DE CONSUMIBLES NO ORIGINALES CEBORA DETERMINA AUTOMÁTICAMENTE LA INVALIDACIÓN DE TODA GARANTÍA Y/O RESPONSABILIDAD RESPECTO DE GENERADORES Y ANTORCHAS PARA EL CORTE POR PLASMA.
- PT O USO DE CONSUMÍVEIS NÃO ORIGINAIS CEBORA ANULA AUTOMATICAMENTE QUALQUER GARANTIA E/OU RESPONSABILIDADE DO FABRICANTE NOS GERADORES E MAÇARICOS DE CORTE COM PLASMA.
- FI EI-ALKUPERÄISTEN KULUTUSOSIEN KÄYTÖN SEURAUKSENA CEBORA MITÄTÖI AUTO-MAATTISESTI KAIKKI TAKUUT JA/TAI VAPAUTUU KAIKESTA VASTUUSTA VIRTALÄHTEIDEN JA PLASMALEIKKAUSPOLTINTEN OSALTA.
- DA BRUG AF FORBRUGSMATERIALER, SOM IKKE ER FREMSTILLET AF CEBORA, MEDFØRER AUTOMATISK BORTFALD AF ENHVER FORM FOR GARANTI OG/ELLER ANSVAR VEDRØREN-DE STRØMKILDER OG SVEJSESLANGER TIL PLASMASKÆRING.
- NL DOOR HET GEBRUIK VAN CONSUMPTIEMATERIAAL DAT NIET DOOR CEBORA GELEVERD WORDT, VERVALT AUTOMATISCH ELKE GARANTIE EN/OF AANSPRAKELIJKHEID VOOR GENERATOREN EN PLASMA SNIJTOORTSEN.
- SV VID ANVÄNDNING AV FÖRBRUKNINGSDELAR SOM INTE ÄR CEBORA ORIGINALDELAR BORT-FALLER GARANTIN AUTOMATISKT OCH/ELLER TILLVERKAREN AVSÄGER SIG ALLT ANSVAR FÖR GENERATORER OCH SLANGPAKET FÖR PLASMASKÄRNING.
- PL UŻYCIE CZĘŚCI EKSPLOATACYJNYCH INNYCH NIŻ ORYGINALNE DOSTARCZANE PRZEZ CEBORA UNIEWAŻNIA GWARANCJĘ ORAZ ZNOSI ODPOWIEDZIALNOŚĆ PRODUCENTA ZA AGREGATY PLAZMOWE ORAZ PALNIKI DO CIĘCIA PLAZMOWEGO.
- EL Η ΧΡΗΣΗ ΜΗ ΑΥΘΕΝΤΙΚΩΝ ΑΝΑΛΩΣΙΜΩΝ CEBORA ΑΚΥΡΩΝΕΙ ΑΥΤΟΜΑΤΑ ΤΗΝ ΟΠΟΙΑΔΗΠΟ-ΤΕ ΠΑΡΕΧΟΜΕΝΗ ΕΓΓΥΗΣΗ Η/ΚΑΙ ΕΥΘΥΝΗ ΕΠΙ ΤΩΝ ΓΕΝΝΗΤΡΙΩΝ ΚΑΙ ΤΩΝ ΦΑΚΩΝ ΚΟΠΗΣ ΜΕ ΠΛΑΣΜΑ.

SOMMARIO

1	PRECAUZIONI DI SICUREZZA 4
1.1	TARGA DELLE AVVERTENZE 4
2	DATI TECNICI
2.1	DESCRIZIONE GENERALE DELL'IMPIANTO
2.2 2.2.1 2.2.2	GENERATORE PLASMA
2.3 2.3.1 2.3.2 2.3.3	GAS CONSOLE
2.4	CONSOLE VALVOLE PVC - ART. 46911
2.5	UNITÀ DI ACCENSIONE HV19-1 - ART. 46411
2.6	UNITÀ DI ACCENSIONE – CONSOLE VALVOLE HV19-PVC ROBOT - ART. 462
2.7	UNITÀ DI ACCENSIONE – CONSOLE VALVOLE HV19-PVC CNC - ART.459
2.8	TORCIA CP450G - ART. 1223-1224-122514
2.9	WATER CONSOLE - ART. 48514
2.10	Gas console PGC-H2 - art.48714
2.11	INTERFACCIA HQC TOUCH – ART.460.0115
3	INSTALLAZIONE 15
3.1	DISIMBALLO E ASSEMBLAGGIO
3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	COLLEGAMENTO DEL GENERATORE.15Collegamento al pantografo CNC18Segnali digitali da controllo pantografo a generatore.19Segnali digitali da generatore a controllo pantografo.20Segnali analogici da generatore a controllo panto- grafo.20Segnale di arresto di emergenza per generatore.21
3.3 3.3.1 3.3.2 3.3.3 3.3.4	COLLEGAMENTO DELLA GAS CONSOLE.22Gas console manuale PGC-3 e PGC-2.22Gas console manuale PCG-D.22Gas console automatica APGC.23Nota sul collegamento dei gas.23

3.4 3.4.1 3.4.2	Collegamento della torcia CP450G Applicazioni su pantografo Applicazioni su robot	23 23 24
3.5	REQUISITI DEL LIQUIDO REFRIGERANTE	24
4	IMPIEGO	25
4.1	Descrizione dei pannelli dei generatori	25
4.2	$D \\ \text{escrizione del pannello della gas console manua-}$	
4.2.1 4.2.2 4.2.3 4.2.4 4.2.4.1	LE E SUO IMPIEGO Preparazione ed esecuzione del taglio (CUT) Preparazione ed esecuzione della marcatura (MARK) Esecuzione del test di tenuta gas (TEST) Funzioni aggiuntive (Seconde funzioni) Preparazione ed esecuzione della Marcatura Sp (SPOT MARK)	25 28 29 29 29 00t
4.2.4.2	2 Gestione della corrente negli angoli del pezzo lavorazione (CORNER)	in 29
4.2.4.3	3 Gestione del tempo di raffreddamento della toro	cia
4.2.4.4	 a fine taglio Visualizzazione portata e temperatura del liqui refrigerante (H2O) 	30 do 30
4.2.4.5	Esecuzione del taglio su lamiere forate o grigli (SR)	iati .31
4.2.4.6	6 Regolazione fine della corrente a distanza (RRI)	31
4.3 4.3.1 4.3.2 4.3.3	DESCRIZIONE DEL PANNELLO DELLA GAS CONSOLE MANUA- LE PGC-D E SUO IMPIEGO Setup dell'impianto Preparazione ed esecuzione del taglio (CUT) Preparazione ed esecuzione della bulinatura (SPOT)	31 .31 33 33
4.3.4	Preparazione ed esecuzione della marcatura (MARK)	34
4.4	DESCRIZIONE DEL PANNELLO DELLA GAS CONSOLE AUTO- MATICA	35
4.5	Codici di Errore	36
4.6	Qualità del taglio	38
4.7	MANUTENZIONE DELL'IMPIANTO	39
5	APPENDICE	40
5.1	KIT OPZIONALE (ART. 425) PER LA CONNESSIONE AL PAN- TOGRAFO	40
5.2	SCHEMA DI MESSA A TERRA DELL'IMPIANTO (FIG. 24)	41
5.3	MISURA DEI LIVELLI DI PRESSIONE SONORA	42

MANUALE DI ISTRUZIONE PER IMPIANTO DI TAGLIO AL PLASMA

IMPORTANTE: PRIMA DELLA MESSA IN OPERA DEL-L'APPARECCHIO LEGGERE IL CONTENUTO DI QUESTO MANUALE E CONSERVARLO, PER TUTTA LA VITA OPE-RATIVA, IN UN LUOGO NOTO AGLI INTERESSATI. QUESTO APPARECCHIO DEVE ESSERE UTILIZZATO ESCLUSIVAMENTE PER OPERAZIONI DI SALDATURA.

1 PRECAUZIONI DI SICUREZZA

LA SALDATURA ED IL TAGLIO AD ARCO POSSONO ESSERE NOCIVI PER VOI E PER GLI ALTRI, pertanto l'utilizzatore deve essere istruito contro i rischi, di seguito riassunti, derivanti dalle operazioni di saldatura. Per informazioni più dettagliate richiedere il manuale cod.3300758

RUMORE.

Questo apparecchio non produce di per se rumori eccedenti gli 80dB. Il procedimento di taglio plasma/saldatura può produrre livelli di rumore superiori a tale limite; pertanto, gli utilizzatori dovranno mettere in atto le precauzioni previste dalla legge.

CAMPI ELETTROMAGNETICI- Possono essere dannosi.

• La corrente elettrica che attraversa qualsiasi conduttore produce dei campi elettromagnetici (EMF). La corrente di saldatura o di taglio genera campi elettromagnetici attorno ai cavi e ai generatori.

· I campi magnetici derivanti da correnti elevate possono incidere sul funzionamento di pacemaker. I portatori di apparecchiature elettroniche vitali (pacemaker) devono consultare il medico prima di avvicinarsi alle operazioni di saldatura ad arco, di taglio, scriccatura o di saldatura a punti.

· L' esposizione ai campi elettromagnetici della saldatura o del taglio potrebbe avere effetti sconosciuti sulla salute. Ogni operatore, per ridurre i rischi derivanti dall' esposizione ai campi elettromagnetici, deve attenersi alle seguenti procedure:

- Fare in modo che il cavo di massa e della pinza portaelettrodo o della torcia rimangano affiancati. Se possibile, fissarli assieme con del nastro.
- Non avvolgere i cavi di massa e della pinza porta elettrodo o della torcia attorno al corpo.
- Non stare mai tra il cavo di massa e quello della pinza portaelettrodo o della torcia. Se il cavo di massa si trova sulla destra dell'operatore anche quello della pinza portaelettrodo o della torcia deve stare da quella parte.
- Collegare il cavo di massa al pezzo in lavorazione più vicino possibile alla zona di saldatura o di taglio.
- Non lavorare vicino al generatore.

ESPLOSIONI.

• Non saldare in prossimità di recipienti a pressione o in presenza di polveri, gas o vapori esplosivi. • Maneggiare con cura le bombole ed i regolatori di pressione utilizzati nelle operazioni di saldatura.

COMPATIBILITÀ ELETTROMAGNETICA

Questo apparecchio è costruito in conformità alle indicazioni contenute nella norma IEC 60974-10(Cl. A) e deve essere usato solo a scopo professionale in un ambiente industriale. Vi possono essere, infatti, potenziali difficoltà nell'assicurare la compatibilità elettromagnetica in un ambiente diverso da quello industriale.

SMALTIMENTO APPARECCHIATURE ELETTRI-CHE ED ELETTRONICHE.

Non smaltire le apparecchiature elettriche assieme ai rifiuti normali!

In ottemperanza alla Direttiva Europea 2002/96/CE sui rifiuti da apparecchiature elettriche ed elettroniche e relativa attuazione nell'ambito della legislazione nazionale, le apparecchiature elettriche giunte a fine vita devono essere raccolte separatamente e conferite ad un impianto di riciclo ecocompatibile. In qualità di proprietario delle apparecchiature dovrà informarsi presso il nostro rappresentante in loco sui sistemi di raccolta approvati. Dando applicazione a questa Direttiva Europea migliorerà la situazione ambientale e la salute umana!

IN CASO DI CATTIVO FUNZIONAMENTO RICHIEDETE L'ASSISTENZA DI PERSONALE QUALIFICATO.

1.1 <u>Targa delle Avvertenze</u>

Il testo numerato seguente corrisponde alle caselle numerate della targa.

1. Le scintille provocate dal taglio possono causare esplosioni od incendi.

- 1.1 Tenere i materiali infiammabili lontano dall'area di taglio.
- 1.2 Le scintille provocate dal taglio possono causare incendi. Tenere un estintore nelle immediate vicinanze e far sì che una persona resti pronta ad utilizzarlo.
- 1.3 Non tagliare mai contenitori chiusi.
- 2. L'arco plasma può provocare lesioni ed ustioni.
- 2.1 Spegnere l'alimentazione elettrica prima di smontare la torcia.
- 2.2 Non tenere il materiale in prossimità del percorso di taglio.
- 2.3 Indossare una protezione completa per il corpo.
- 3. Le scosse elettriche provocate dalla torcia o dal cavo possono essere letali. Proteggersi adeguatamente dal pericolo di scosse elettriche.
- 3.1 Indossare guanti isolanti. Non indossare guanti umidi o danneggiati.
- 3.2 Assicurarsi di essere isolati dal pezzo da tagliare e dal suolo.
- 3.3 Scollegare la spina del cavo di alimentazione prima di lavorare sulla macchina.
- 4. Inalare le esalazioni prodotte durante il taglio può essere nocivo alla salute.
- 4.1 Tenere la testa lontana dalle esalazioni.
- 4.2 Utilizzare un impianto di ventilazione forzata o di scarico locale per eliminare le esalazioni.
- 4.3 Utilizzare una ventola di aspirazione per eliminare le esalazioni.
- 5. I raggi dell'arco possono bruciare gli occhi e ustionare la pelle. L'operatore deve, quindi, proteggere gli occhi con lenti con grado di protezione uguale o superiore a DIN11 e il viso adeguatamente.
- 5.1 Indossare elmetto e occhiali di sicurezza. Utilizzare adeguate protezioni per le orecchie e camici con il colletto abbottonato. Utilizzare maschere a casco con filtri della corretta gradazione. Indossare una protezione completa per il corpo.
- 6. Leggere le istruzioni prima di utilizzare la macchina od eseguire qualsiasi operazione su di essa.
- 7. Non rimuovere né coprire le etichette di avvertenza.

2 DATI TECNICI

2.1 Descrizione generale dell'impianto

Il Plasma Prof 166 HQC (Art. 948) e il Plasma Prof 255 HQC (Art. 949) completi di unità di accensione HV19-1 (Art. 464) oppure HV-PVC (art.462), oppure HV19/PVC (art.459), gas console manuale PGC-3 - PGC-2 (Art. 470), gas console manuale PGC-D (Art. 480) oppure gas console automatica APGC (Art.466), console valvole PVC (Art. 469) e torcia CP450G (vari articoli in dipendenza dell'applicazione), sono impianti per taglio plasma multigas meccanizzato e completamente gestiti da microprocessore, in grado di erogare una corrente max di 120/250 A al 100% di fattore di utilizzo.

Tutti i parametri di processo (materiale, gas, spessore e corrente) sono selezionabili dalla gas console e, in base alla loro scelta, vengono automaticamente indicati i flussi ottimali dei gas.

Attraverso una porta RS232 posta sul pannello posteriore del generatore è possibile acquisire facilmente, tramite un Personal Computer, lo stato di tutti i parametri operativi; ciò consente una visione completa della situazione di lavoro e può aiutare nel caso di eventuali malfunzionamenti.

Tramite la stessa RS232 oppure con una chiavetta USB è possibile poi aggiornare il software di macchina.

Per un taglio ottimale di ogni materiale metallico, l'impianto utilizza diversi gas, quali: aria, azoto N2, ossigeno O2, miscela H35 (35% idrogeno H2 – 65% argon Ar), miscela F5 (5% idrogeno H2 – 95% azoto N2). Le combinazioni di questi ultimi vengono proposte in automatico in funzione del materiale scelto.

E' possibile poi eseguire la marcatura con il gas argon Ar, proposto anch'esso in automatico.

Sono disponibili differenti set di consumabili in funzione della corrente di taglio e del gas usato, calibrati e testati per ottenere la massima qualità di taglio.

2.2 Generatore plasma

In esso risiede il microprocessore che gestisce l'intero impianto e il cui software è aggiornabile dalla porta RS232 oppure dalla porta USB posta sul pannello posteriore.

Nella parte posteriore vi è incluso il gruppo di raffreddamento, completo di serbatoio, pompa, radiatore, filtri, flussimetro e temometro.

2.2.1 Generatore Plasma Prof 166 HQC - Art. 948

I Plasma Prof 166 HQC è un generatore di corrente costante, 120A max al 100% di fattore di utilizzo, conforme alla normativa IEC 60974-1, 60974-2 e 60974-10.

DATI TECNICI

300 V
120 A
128 V
100% @ 120A
40 °C
Ad aria, con venti- lazione forzata
IP21S
205 kg

Tensioni e max correnti nominali di alimentazione: 220/230 V, 3 ~, 50/60 Hz, 52 A 380/400 V, 3 ~, 50/60 Hz, 30 A 415/440 V, 3 ~, 50/60 Hz, 28 A

GRUPPO DI RAFFREDDAMENTO TORCIA

Potenza nominale di raffreddamento a 1 l/min a 25°C	1.7 kW
Pressione max	0.45 MPa

Fig. 2a

2.2.2 Generatore Plasma Prof 255 HQC - Art. 949

Il Plasma Prof 255 HQC è un generatore di corrente costante, 250A max al 100% di fattore di utilizzo, conforme alla normativa IEC 60974-1, 60974-2 e 60974-10.

DATI TECNICI

Tensione nominale a vuoto (Uo)	315 V
Max corrente di uscita (I2)	250 A
Tensione di uscita (U2)	170 V
Fattore di utilizzo (duty cycle)	100% @ 250A
Max temperatura ambiente	40 °C
Raffreddamento	Ad aria, con venti- lazione forzata
Grado di protezione della carcassa	IP21S
Peso netto	406 kg

Tensioni e max correnti nominali di alimentazione: 220/230 V, 3 ~, 50/60 Hz, 145 A 380/400 V, 3 ~, 50/60 Hz, 76 A 415/440 V, 3 ~, 50/60 Hz, 70 A

GRUPPO DI RAFFREDDAMENTO TORCIA

Potenza nominale di raffreddamento a 1 l/min a 25°C	1.7 kW
Pressione max	0.45 MPa

2.3 Gas console

La gas console è un dispositivo atto a gestire la selezione dei parametri di processo e la regolazione dei flussi di gas, conforme alla normativa IEC 60974-8. Contiene elettrovalvole, riduttori e trasduttori di pressione nonché schede elettroniche per l'alimentazione e controllo di tali componenti.

2.3.1 Gas console manuale PGC-3 - PGC-2 -Art. 470

E' suddivisa in due unità: la PGC-3, alimentata da gas aria, argon Ar, azoto N2 e ossigeno O2, e la PGC-2, alimentata da gas H35 (miscela al 35% idrogeno H2 e 65% argon Ar) e F5 (miscela al 5% idrogeno H2 e 95% azoto N2).

289

ନ

98

DATI TECNICI

GAS USATI	TITOLO	PRESSIONE MAX DI INGRESSO	PORTATA
Aria	Pulita, secca e senza olio come da normativa ISO 8573-1: 2010. Clas- se 1.4.2 (particola- to-acqua-olio)*	0.8 MPa (8 bar)	220 l/min
Argon	99.997%	0.8 MPa (8 bar)	70 l/min
Azoto	99.997%	0.8 MPa (8 bar)	150 l/min
Ossigeno	99.95%	0.8 MPa (8 bar)	90 l/min
H35	Miscela: 35% idrogeno, 65% argon	0.8 MPa (8 bar)	130 l/min
F5	Miscela: 5% idrogeno, 95% azoto	0.8 MPa (8 bar)	30 l/min

* la normativa ISO 8573-1: 2010 prevede, per la Classe 1.4.2:

- Particolato: ≤ 20.000 particelle solide per m3 d'aria con dimensioni comprese tra 0.1 e 0.5 µm;
 ≤ 400 particelle solide per m3 d'aria con dimensioni comprese tra 0.5 e 1.0 µm;
 ≤ 10 particelle solide per m3 d'aria con dimensioni comprese tra 1.0 e 5.0 µm.
 Acqua: il punto di rugiada in pressione dell'aria deve
- Acqua: Il punto di rugiada in pressione dell'aria deve essere inferiore o uguale a 3°C.
- Olio: la concentrazione totale di olio deve essere inferiore o uguale a 0,1 mg per m3 d'aria.

Fattore di utilizzo (duty cycle)	100%
Grado di protezione della carcassa	IP 23
Peso netto	20 kg

2.3.2 Gas console automatica APGC - Art. 466

E' suddivisa in due unità: una superiore, alimentata da gas aria, argon Ar, azoto N2 e ossigeno O2, e una inferiore, alimentata da gas H35 (miscela al 35% idrogeno H2 e 65% argon Ar) e F5 (miscela al 5% idrogeno H2 e 95% azoto N2).

289

98

0

DATI TECNICI

GAS USATI	TITOLO	PRESSIONE MAX DI INGRESSO	PORTATA
Aria	Pulita, secca e senza olio come da normativa ISO 8573-1: 2010. Clas- se 1.4.2 (particola- to-acqua-olio)*	0.8 MPa (8 bar)	220 l/min
Argon	99.997%	0.8 MPa (8 bar)	70 l/min
Azoto	99.997%	0.8 MPa (8 bar)	150 l/min
Ossigeno	99.95%	0.8 MPa (8 bar)	90 l/min
H35	Miscela: 35% idrogeno, 65% argon	0.8 MPa (8 bar)	130 l/min
F5	Miscela: 5% idrogeno, 95% azoto	0.8 MPa (8 bar)	30 l/min

* la normativa ISO 8573-1: 2010 prevede, per la Classe 1.4.2:

- Particolato: ≤ 20.000 particelle solide per m3 d'aria con dimensioni comprese tra 0.1 e 0.5 μm;
 ≤ 400 particelle solide per m3 d'aria con dimensioni comprese tra 0.5 e 1.0 μm;
 ≤ 10 particelle solide per m3 d'aria con dimensioni comprese tra 1.0 e 5.0 μm.
 Acqua: il punto di rugiada in pressione dell'aria deve
- Acqua: Il punto di rugiada in pressione dell'aria deve essere inferiore o uguale a 3°C.
- Olio: la concentrazione totale di olio deve essere inferiore o uguale a 0,1 mg per m3 d'aria.

Fattore di utilizzo (duty cycle)	100%
Grado di protezione della carcassa	IP 23
Peso netto	20 kg

2.3.3 Gas console manuale PGC-D - Art 480

L'unità PGC-D è alimentata da gas aria, argon Ar, azoto N2 e ossigeno O2 alla pressione max di 0.8 MPa (8 bar).

0

DATI TECNICI

TITOLO	PRESSIONE MAX DI INGRESSO	PORTATA	
Pulita, secca e senza olio come da normativa ISO 8573-1: 2010. Clas- se 1.4.2 (particola- to-acqua-olio)*	0.8 MPa (8 bar)	220 l/min	
99.997%	0.8 MPa (8 bar)	70 l/min	
99.997%	0.8 MPa (8 bar)	150 l/min	
99.95%	0.8 MPa (8 bar)	90 l/min	
	TITOLO Pulita, secca e senza olio come da normativa ISO 8573-1: 2010. Clas- se 1.4.2 (particola- to-acqua-olio)* 99.997% 99.997% 99.95%	TITOLOPRESSIONE MAX DI INGRESSOPulita, secca e senza olio come da normativa ISO 8573-1: 2010. Clas- se 1.4.2 (particola- to-acqua-olio)*0.8 MPa (8 bar)99.997%0.8 MPa (8 bar)99.997%0.8 MPa (8 bar)99.95%0.8 MPa (8 bar)	

* la normativa ISO 8573-1: 2010 prevede, per la Classe 1.4.2:

- Particolato: \leq 20.000 particelle solide per m3 d'aria con dimensioni comprese tra 0.1 e 0.5 $\mu m;$ \leq 400 particelle solide per m3 d'aria con dimensioni comprese tra 0.5 e 1.0 $\mu m;$ ≤ 10 particelle solide per m3 d'aria con dimensioni comprese tra 1.0 e 5.0 µm.
- il punto di rugiada in pressione dell'aria deve • Acqua: essere inferiore o uguale a 3°C.
- la concentrazione totale di olio deve essere infe-riore o uguale a 0,1 mg per m3 d'aria. • Olio:

Fattore di utilizzo (duty cycle)	100%
Grado di protezione della carcassa	IP 23
Peso netto	20 kg

2.4 Console valvole PVC - Art. 469

La console valvole PVC è un dispositivo atto a gestire lo scambio di gas nei passaggi accensione-trasferimento e nello spegnimento.

Contiene elettrovalvole, valvole di non ritorno, riduttori di pressione.

Il peso netto della PVC (Fig. 5) è di 3,2 kg.

2.5 Unità di accensione HV19-1 - Art. 464

L'unità di accensione HV19-1 è un dispositivo atto a fornire l'impulso di alta frequenza-alta tensione (14 kV) necessario ad innescare l'arco elettrico all'interno della torcia, tra elettrodo ed ugello.

Esso è conforme alla normativa IEC 60974-3.

Può essere montato in ogni posizione e l'apertura del coperchio provoca un arresto dell'impianto.

DATI TECNICI

14 kV
100% @ 420A
IP 23
6.5 kg

2.6 <u>Unità di accensione – Console valvole</u> <u>HV19-PVC robot - art. 462</u>

L'unità di accensione – console valvole è un dispositivo che svolge una duplice funzione:

- fornisce l'impulso di alta frequenza-alta tensione (14 kV), necessario ad innescare l'arco elettrico all'interno della torcia tra elettrodo ed ugello;

- gestisce lo scambio dei gas nei passaggi accensionetrasferimento e nello spegnimento. Contiene elettrovalvole, valvole di non ritorno e riduttori di pressione.

Esso conforme alla normativa IEC 60974-3.

Generalmente viene utilizzata in impianti robotizzati. L'apertura del coperchio provoca un arresto dell'impianto.

DATI TECNICI

Tensione di picco (Upk)	14 kV
Fattore di utilizzo (duty cycle)	100% @ 420A
Grado di protezione della carcassa	IP 23
Peso netto	10 kg

270

Fig. 7

2.7 <u>Unità di accensione – Console valvole</u> <u>HV19-PVC CNC - art.459</u>

L'unità di accensione – console valvole è un dispositivo che svolge una duplice funzione:

- fornisce l'impulso di alta frequenza-alta tensione (14 kV), necessario ad innescare l'arco elettrico all'interno della torcia tra elettrodo ed ugello;

- gestisce lo scambio dei gas nei passaggi accensionetrasferimento e nello spegnimento.

Contiene elettrovalvole, valvole di non ritorno e riduttori di pressione.Viene utilizzata in impianti con pantografo, in abbinamento alla relativa torcia.

L'apertura del coperchio provoca un arresto dell'impianto

DATI TECNICI

Tensione di picco (Upk)	14 kV
Fattore di utilizzo (duty cycle)	100% @ 420A
Grado di protezione della carcassa	IP 23
Peso netto	8,2 kg

2.8 Torcia CP450G - Art. 1223-1224-1225

La torcia CP450G è una torcia multigas raffreddata con refrigerante liquido, adatta al taglio inclinato (bevel cutting) e conforme alla normativa IEC 60974-7.

E' adatta all'uso di gas plasma quali: aria, argon Ar, azoto N2, ossigeno O2, miscela H35 (35% idrogeno H2 – 65% argon Ar) e miscela F5 (5% idrogeno H2 – 95% azoto N2); di gas secondari quali: aria, argon Ar, azoto N2, ossigeno O2; di gas ausiliari quali: aria e azoto N2. Utilizzata con il generatore Plasma Prof 420 HQC, la corrente max di taglio è 420A al 100% di fattore di utilizzo.

Vi sono diverse versioni della torcia CP450G in base all'applicazione: su pantografo oppure su impianti robotizzati.

Il peso netto della torcia completa di cavo, varia da 8 kg a 12 kg in base alle diverse lunghezze.

2.9 Water console - Art. 485

La water console è un dispositivo accessorio atto a gestire il flusso di acqua necessario per il taglio di Stainless Steel e Alluminio, qualora si voglia usare la combinazione azoto N2/acqua H2O.

Fare riferimento al manuale istruzioni di tale accessorio per la descrizione del funzionamento.

2.10 Gas console PGC-H2 - art.487

La gas console PGC-H2 è un dispositivo accessorio, atto a gestire il flusso di gas necessario per il taglio di Stainless Steel e Alluminio di qualità elevata. In particolare, è adatta al taglio dello Stainless Steel di spessori medio-alti. Si usano le combinazioni F5/N2 (5% idrogeno–95% azoto/azoto) e H35/N2 (35% idrogeno–65% argon/azoto). Fare riferimento al manuale istruzioni di tale accessorio per la descrizione del funzionamento.

2.11 Interfaccia HQC touch - art.460.01

Il Pannello di Controllo HQC (Art. 460.01) permette la gestione della gas console automatica di un impianto Cebora della linea HQC, indipendentemente dal tipo di interfaccia (digitale o analogica) con il CNC/Robot. In particolare, si effettua la configurazione dei parametri di taglio e l'impostazione dello stato di RUN. Tutti i parametri di processo (materiale, gas, spessore e corrente) sono selezionabili dal pannello di controllo e, in base alla loro scelta, vengono automaticamente indicati i consumabili corretti e predisposti i flussi ottimali dei gas.

Fare riferimento al manuale istruzioni di tale accessorio per la descrizione del funzionamento.

N.B. nel caso si utilizzi tale interfaccia con la gas console automatica art.466, portare i *dip switches* DIP1 del circuito controllo in posizione OFF-OFF.

3 INSTALLAZIONE

L'installazione dell'impianto deve essere eseguita da personale qualificato. Tutti i collegamenti devono essere conformi alle vigenti norme e realizzati nel pieno rispetto della legge antinfortunistica (vedi CEI 26-23 / IEC-TS 62081). Assicurarsi che il cavo di alimentazione sia disconnesso durante tutte le fasi di installazione.

Seguire scrupolosamente lo schema di messa a terra evidenziato in Appendice.

3.1 Disimballo e assemblaggio

Per spostare il generatore usare un carrello elevatore. Per rimuovere la pedana in legno facente parte dell'imballo:

• svitare le 4 viti di fissaggio alla pedana di legno

• sollevare il generatore con un carrello elevatore e posizionare le forche tenendo conto della posizione del suo baricentro (vedi Fig. 2). L'impianto di raffreddamento preleva l'aria dalla parte posteriore del generatore e la fa fuoriuscire dalle grate della parte anteriore. Posizionare il generatore in modo da avere un'ampia zona di ventilazione e tenere una distanza da eventuali pareti di almeno 1 m.

3.2 Collegamento del generatore.

Tutti i collegamenti devono essere eseguiti da personale qualificato.

Generatore Plasma Prof 166 HQC

• Il generatore viene fornito predisposto per la tensione di alimentazione di 400V trifase. Per alimentazioni diverse: smontare il laterale sinistro del generatore (vedi lista ricambi), togliere il coperchio a copertura delle morsettiere ed agire sulle stesse come indicato in figura 10 a:

Nel caso di alimentazione a 230V trifase, cortocircuitare anche il primo morsetto in basso a sinistra con l'ultimo in basso a destra (vedi Fig.10 a riquadro 230V) usando il cavo in dotazione (fissato, con fascetta, siu cavi della morsettie-ra inferiore).

Generatore Plasma Prof 255 HQC

• Il generatore viene fornito predisposto per la tensione di alimentazione di 400V trifase. Per alimentazioni diverse: smontare il laterale destro del generatore (vedi lista ricambi), togliere il coperchio a copertura delle morsettiere ed agire sulle stesse come indicato in figura 10 b:

NOTA: le morsettiere a 3 poli in alto rispettivamente a sinistra e a destra sono relative al trasformatore ausiliario e al trasformatore di servizio.

Nel caso di alimentazione a 230V trifase, cortocircuitare anche il primo morsetto in basso a sinistra con l'ultimo in basso a destra (vedi Fig.10 b riquadro 230V) usando il cavo in dotazione (posizionato con una fascetta sul coperchio).

Assicurarsi che la tensione di alimentazione corrisponda a quella indicata sulla targa dati del generatore.

Il conduttore giallo-verde del cavo di alimentazione deve essere collegato ad una efficiente presa di terra dell'impianto (vedi schema in Appendice 5.2-Fig.19); i rimanenti conduttori devono essere collegati alla linea di alimentazione attraverso un interruttore posto, possibilmente, vi-

cino alla zona di taglio per permettere uno spegnimento veloce in caso di emergenza.

La portata dell'interruttore magnetotermico o dei fusibili deve essere uguale alla corrente l1max assorbita dall'apparecchio. La l1max è riportata nella targa dati, sul posteriore della macchina, in corrispondenza della tensione U1 di alimentazione.

Eventuali prolunghe devono essere di sezione adeguata alla corrente l1max assorbita.

• Dopo tale operazione, proseguire con il collegamento delle diverse connessioni (Fig. 11).

Inserire la connessione di collegamento art. 1169, con i relativi cavi, nell'attacco torcia **G** del generatore e avvitare a fondo le 3 viti di fissaggio. Serrare il cavo nero di potenza al morsetto **B** (-), inserire i due cavetti della sicurezza nella morsettiera **C** e il faston del cavo rosso dell'arco pilota nel relativo cavetto **A** con faston maschio. Serrare il terminale del cavo massa nel morsetto **H** (+) come da figura e i tubi dell'acqua di raffreddamento **E** ed **F**, facendo attenzione alla corrispondenza del colore (**E**-rosso = acqua calda, ritorno; **F**-blu = acqua fredda, mandata).

Con riferimento alla Fig.13, collegare la connessione art.1189 al connettore B (relativa alla gas console); la connessione di collegamento al pantografo al connettore A; infine, l'eventuale connessione art.1199 al connettore C (relativa al remote panel).

Serrare il terminale del cavo massa nel morsetto **H** (+) come da figura e i tubi dell'acqua di raffreddamento **E** ed **F**, facendo attenzione alla corrispondenza del colore (**E**-rosso = acqua calda, ritorno; **F**-blu = acqua fredda, mandata). Inserire l'altro capo della connessione art. 1169 nella Unità HV19/1 (art. 464) come indicato nella parte destra della figura 12 (cavo nero di potenza al morsetto **B** (-) e faston del cavo rosso dell'arco pilota in **A**. L'Unità HV19/1 deve

essere collegata a massa direttamente sul pantografo (tramite le 4 viti di fissaggio mostrate nella figura 6), in posizione tale da permettere una sua apertura.

3.2.1 Collegamento al pantografo CNC

Nel caso di generatore provvisto di interfaccia digitale, riferirsi alla documentazione specifica. N.B.: per il connettore CNC viene dato in dotazione il connettore volante maschio (AMP P/N 182926-1- Fig. 14) con i rispettivi pin; il resto della connessione al pantografo è a cura del cliente.

3.2.2 Segnali digitali da controllo pantografo a generatore.

CABLAGGIO DI UN INGRESSO DIGITALE

ROBOT READY

TERMINALI CONNETTORE CNC SU GENERATORE	NOME SEGNALE	TIPO SEGNALE	POSIZIONE SU SCHEDA INTERFACCIA
1	Robot	Segnale	J10, pin 3
2	Ready	+24 Vdc	J10, pin 4

Il segnale "Robot Ready" è attivo alto.

Per avere il Generatore pronto per il taglio è richiesta una tensione di +24Vdc.

Il Controllo Pantofgrafo deve impostare questo segnale appena è pronto per il taglio.

La mancanza del segnale "Robot Ready" arresta immediatamente il processo di taglio con indicazione su Pannello di Controllo del messaggio "rob" lampeggiante.

NOTA: Se il segnale "Robot Ready" non è attivo nessun segnale digitale o analogico viene acquisito.

START

TERMINALI CONNETTORE CNC SU GENERATORE	NOME SEGNALE	TIPO SEGNALE	POSIZIONE SU SCHEDA INTERFACCIA
3	Stort	Segnale	J10, pin 1
4	Start	+24 Vdc	J10, pin 2

Il segnale "Start" è attivo alto ed avvia il processo di taglio. Il processo rimane attivo finchè il segnale "Start" è presente.

Eccezioni:il segnale "Robot Ready" è assente. il segnale "Power Source Ready" è assente (es: sovratemperatura, livello liquido insufficiente, etc.).

SPOT-MARK

TERMINALI CONNETTORE CNC SU GENERATORE	NOME SEGNALE	TIPO SEGNALE	POSIZIONE SU SCHEDA INTERFACCIA
5	Creat	Segnale	J10, pin 7
6	Spor	+24 Vdc	J10, pin 8

Il segnale "Spot" è attivo alto.

Spot 0 Vdc= il Controllo Pantografo segnala al Generatore la condizione di taglio normale.

Spot +24 Vdc= il Controllo Pantografo comanda al Generatore di attivare la modalità "Marcatura Spot".

CORNER

TERMINALI CONNETTORE CNC SU GENERATORE	NOME SEGNALE	TIPO SEGNALE	POSIZIONE SU SCHEDA INTERFACCIA
15	Corpor	Segnale	J10, pin 5
16	Corner	+24 Vdc	J10, pin 6

Il segnale "Corner" è attivo alto.

Corner 0 Vdc = il Controllo Pantografo segnala al Generatore la condizione di taglio normale.

Corner +24 Vdc = il Controllo Pantografo segnala al Generatore l'avvicinamento ad un angolo.

PREFLOW

TERMINALI CONNETTORE CNC SU GENERATORE	NOME SEGNALE	TIPO SEGNALE	POSIZIONE SU SCHEDA INTERFACCIA
17	Droflow	Segnale	J11, pin 5
18	Frenow	+24 Vdc	J11, pin 6

Il segnale "Preflow" è attivo alto.

Preflow 0 Vdc = il Controllo Pantografo segnala al Generatore di NON attivare la funzione "Preflow".

Preflow +24 Vdc = il Controllo Pantografo comanda al Generatore di attivare la funzione "Preflow".

CUT/MARK

TERMINALI CONNETTORE CNC SU GENERATORE	NOME SEGNALE	TIPO SEGNALE	POSIZIONE SU SCHEDA INTERFACCIA
19	Cut/Mark	Segnale	J11, pin 7
20	Gut/Mark	+24 Vdc	J11, pin 8

Il segnale "Gut/Mark" è attivo alto.

Cut/Mark 0 Vdc = il Controllo Pantografo segnala al Generatore la condizione di taglio normale.

Cut/Mark +24 Vdc = il Controllo Pantografo segnala al Generatore di attivare la modalità "Marcatura".

3.2.3 Segnali digitali da generatore a controllo pantografo.

CABLAGGIO DI UNA USCITA DIGITALE A RELÈ

tensione contatti24 Vdc / 120 Vac;corrente contatti1 Adc / 0,5 Aac max;frequenza di commutazione15 Hz max.

ARC TRANSFER

TERMINALI CONNETTORE CNC SU GENERATORE	NOME SEGNALE	TIPO SEGNALE	POSIZIONE SU SCHEDA INTERFACCIA
12	Arc	Contatto NO	J4, pin 1
14	Transfer	Terminale C	J4, pin 3

Il segnale "Arc Transfer" è attivo alto (contatto chiuso). Il segnale "Arc Transfer" rimane attivo per la durata del taglio, inclusa la fase di sfondamento.

POWER SOURCE READY

TERMINALI CONNETTORE CNC SU GENERATORE	NOME SEGNALE	TIPO SEGNALE	POSIZIONE SU SCHEDA INTERFACCIA
25	Power	Terminale C	J3, pin 5
26	Source ready	Contatto NO	J3, pin 6

Il segnale "Power Source Ready" è attivo alto (contatto chiuso).

Il segnale "Power Source Ready" rimane attivo per il tempo in cui il Generatore è pronto per tagliare. Appena interviene un messaggio di errore nel Generatore, oppure il segnale "Robot Ready" è disattivato dal Controllo Pantografo, il segnale "Power Source Ready" cessa di essere attivo. Ciò significa che il segnale "Power Source Ready" può rilevare sia errori del Generatore sia errori del Pantografo.

PROCESS ACTIVE

TERMINALI CONNETTORE CNC SU GENERATORE	NOME SEGNALE	TIPO SEGNALE	POSIZIONE SU SCHEDA INTERFACCIA
27	Process	Terminale C	J3, pin 3
28	Active	Contatto NO	J3, pin 4

Il segnale "Process Active" è attivo alto (contatto chiuso). Quando il Controllo Pantografo inizializza il segnale digitale "Start", il processo di taglio inizia con il gas preflow, seguito dall'operazione di taglio e successivamente dal gas postflow.

Dall'inizio del gas preflow fino alla fine del gas postflow, il Generatore inizializza il segnale "Process Active". Il Generatore sta eseguendo il processo.

3.2.4 Segnali analogici da generatore a controllo pantografo.

CABLAGGIO DI UNA USCITA ANALOGICA DI TENSIO-NE ISOLATA.

tensione d'uscita corrente d'uscita frequenza d'uscita 0 ÷ 10 Vdc; 20 mA max; 5 Hz max.

NOTA: Entrambe le sezioni 1 e 2 di DIP1 devono essere sempre in posizioni uguali (es.: entrambe in ON o entrambe in OFF).

V	Arc-IS	0
_		

TERMINALI CONNETTORE CNC SU GENERATORE	NOME SEGNALE	TIPO SEGNALE	POSIZIONE SU SCHEDA INTERFACCIA
11	V_Arc-ISO	analog out+	J5, pin 3
7	(0÷5V) (0÷10V)	analog out-	J5, pin 4

"V_Arc-ISO" è il segnale relativo alla tensione d'arco all'uscita del Generatore (tensione "elettrodo-pezzo in lavorazione"), fornito in modo isolato e ridotto.

Il segnale "V_Arc-ISO" è disponibile con i seguenti valori di fondo scala:

• tensione da 0 a 5V, corrispondente alla tensione d'arco da 0 a 250V (rapporto riduzione = 1/50);

• tensione da 0 a 10V, corrispondente alla tensione d'arco da 0 a 250V (rapporto riduzione = 1/25).

Il valore di fondo scala dipende dalla posizione dei dipswitches Dip1 sulla scheda Interfaccia (vedi fig. 15).

La macchina viene fornita con l'uscita della tensione d'arco ridotta isolata a 1/50 Varc.

CABLAGGIO DI UNA USCITA ANALOGICA DI TENSIO-NE NON ISOLATA.

tensione d'uscita $0 \div 250$ Vdc; impedenza d'uscita 10 Kohm, circa.

V_Arc-NO-ISO

TERMINALI CONNETTORE CNC SU GENERATORE	NOME SEGNALE	TIPO SEGNALE	POSIZIONE SU CIRCUITO TORCIA + MISURA
9	V_Arc-NO-ISO	analog out+	J8, pin 1
8	(0÷250V)	analog out-	J8, pin 2

"V_Arc-NO-ISO" è' il segnale relativo alla tensione d'arco all'uscita del Generatore (tensione "elettrodo-pezzo in lavorazione"), fornito in modo diretto e NON isolato.

Il segnale "V_Arc-NO-ISO" è disponibile con valori di tensione $0 \div 250$ Vdc e con il terminale positivo (potenziale del pezzo in lavorazione) elettricamente collegato al potenziale di massa dell'impianto.

Il potenziale di "elettrodo" è fornito con un resistore da 10 Kohm, circa, inserito in serie all'uscita.

3.2.5 Segnale di arresto di emergenza per generatore

CABLAGGIO DELL'INGRESSO EMERGENZA.

Tensione d'ingresso 24 Vdc; corrente assorbita 20 mA max

EMERGENCY A

TERMINALI CONNETTORE CNC SU GENERATORE	NOME SEGNALE	TIPO SEGNALE	POSIZIONE INTERNA AL GENERATORE
21	Emergency	Contatto NC	Controllo TL linea
22	A	Contatto NC	Controllo TL linea

"Emergency A" è il segnale di arresto di emergenza fornito al Generatore dal Controllo Pantografo o dai dispositivi di protezione dell'Impianto. Deve essere fornito dal contatto di un relè o dispositivo di sicurezza; l'intervento sul dispositivo provoca l'apertura del contatto e quindi l'arresto immediato del Generatore, con l'apertura del contattore di linea interno al Generatore. Il Generatore risulta così privo di alimentazione ai circuiti di potenza. Il segnale "Emergency A" è attivo basso (contatto aperto): per avere il Generatore pronto per il taglio è richiesta la chiusura del contatto. "Emergency A" arresta immediatamente l'erogazione di corrente dal Generatore. Su Pannello di Controllo appare il messaggio "OFF rob".

EMERGENCY B

TERMINALI CONNETTORE CNC SU GENERATORE	NOME SEGNALE	TIPO SEGNALE	POSIZIONE INTERNA AL GENERATORE
23	Emergency	Contatto NC	Controllo TL linea
24	В	Contatto NC	Controllo TL linea

"Emergency B" è il segnale di arresto di emergenza fornito al Generatore dal Controllo Pantografo o dai dispositivi di protezione dell'Impianto. Deve essere fornito dal contatto di un relè o dispositivo di sicurezza; l'intervento sul dispositivo provoca l'apertura del contatto e quindi l'arresto immediato del Generatore, con l'apertura del contattore di linea interno al Generatore. Il Generatore risulta così privo di alimentazione ai circuiti di potenza. Il segnale "Emergency B" è attivo basso (contatto aperto): per avere il Generatore pronto per il taglio è richiesta la chiusura del contatto. "Emergency B" arresta immediatamente l'erogazione di corrente dal Generatore. Su Pannello di Controllo appare il messaggio "OFF rob".

NOTA: è disponibile, come kit opzionale, un connettore multipolare con segnali aggiuntivi (vedi appendice).

3.3 Collegamento della gas console

3.3.1 Gas console manuale PGC-3 e PGC-2

• Fissare la gas console sopra il generatore oppure sopra il pantografo e collegare le masse ad un efficiente impianto di terra secondo lo schema di fig. 24 in appendice 5.2. Le due unità PGC-3 e PGC-2 sono collegate insieme tramite:

- la connessione tra CN06 e CN07

- il tubo tra l'uscita "plasma cutflow" di PGC-3 e l'ingresso "plasma" di PGC-2

• Collegare il fascio tubi art.1166 serrando i tubi alle rispettive uscite dei gas e facendo attenzione alla corrispondenza delle marcature (plasma preflow, secondary preflow/cutflow e auxiliary nella PGC-3; plasma cutlow nella PGC-2); avvitare il connettore elettrico all'uscita CN05 (vedi parte sinistra di fig. 16).

• Collegare l'altra estremità del art.1166 alla console valvole PVC (art.469) per i tubi "plasma", a "secondary" e "auxiliary", facendo attenzione alla corrispondenza delle marcature. Fissare la PVC sulla testa del pantografo, in prossimità della torcia (vedi parte destra di fig. 16).

• Collegare infine la connessione art.1189 avvitando il connettore elettrico all'uscita CN04 (vedi parte sinistra di fig. 16).

3.3.2 Gas console manuale PCG-D

• Fissare la gas console sopra il generatore oppure sopra il pantografo e collegare le masse ad un efficiente impianto di terra secondo lo schema di fig. 24 in appendice 5.2. Collegare il fascio tubi art.1166 serrando i tubi alle rispettive uscite dei gas e facendo attenzione alla corrispondenza delle marcature (plasma preflow/cutflow, secondary preflow/cutflow e auxiliary;

• avvitare il connettore elettrico all'uscita "VALVE CON-SOLE" (vedi parte sinistra di fig.16);

- collegare l'altra estremità del art.1166 alla console valvole PVC (art.469) per i tubi "plasma", "secondary" e "auxiliary", facendo attenzione alla corrispondenza delle

marcature. Fissare la PVC sulla testa del pantografo, in prossimità della torcia (vedi parte destra di fig. 16);

• collegare infine la connessione art.1189 avvitando il connettore elettrico all'uscita "POWER SOURCE" (vedi parte sinistra di fig. 16).

3.3.3 Gas console automatica APGC.

• Fissare la gas console sopra il generatore oppure sopra il pantografo e collegare le masse ad un efficiente impianto di torre acconde le achema di Eia. 24 in appendice 5.2

to di terra secondo lo schema di Fig. 24 in appendice 5.2. • Collegare il fascio tubi art.1166 serrando i tubi alle rispettive uscite dei gas e facendo attenzione alla corrispondenza delle marcature (plasma preflow - cutflow, secondary preflow - cutflow e auxiliary); avvitare il connettore elettrico all'uscita CN05 (vedi fig.17).

• Collegare l'altra estremità del art.1166 alla console valvole PVC (art.469) per i tubi "plasma", a "secondary" e "auxiliary", facendo attenzione alla corrispondenza delle marcature dei tubi gas. Fissare la PVC sulla testa del pantografo, in prossimità della torcia (vedi parte destra di fig. 16).

• Collegare infine la connessione art.1189 avvitando il connettore elettrico all'uscita CN04 (vedi fig.17).

Assicurarsi che l'aria (AIR) sia sempre connessa, alla pressione adeguata, alla gas console automatica poiché viene usata come gas di "servizio".

3.3.4 Nota sul collegamento dei gas

Le filettature degli ingressi dei gas (INLET GAS) sono rispettivamente 1/4G per gas aria, Ar, N2, O2 e auxiliary e 1/8G per gas H35 e F5.

La fornitura dei gas così come la manutenzione programmata/preventiva dell'impianto di distribuzione degli stessi è a cura del cliente. Si ricorda che la mancata manutenzione dell'impianto può essere causa di gravi incidenti.

Leggere attentamente la "Scheda di Sicurezza" relativa ad ogni gas usato in modo da non sottovalutare pericoli derivanti da un uso improprio.

NOTA: La scelta del tipo di tubo va effettuata in base al gas utilizzato (vedi norma EN 559).

NOTA: l'uso di gas di purezza inferiore può portare, per ogni dato materiale, ad una riduzione della velocità, della qualità e dello spessore massimo di taglio. Non è inoltre garantita la durata dei consumabili.

ATTENZIONE: quando si utilizza gas ossigeno, tutto ciò che entra in contatto con esso deve essere esente da oli e grassi.

• quando si seleziona il programma di taglio MS -O2/O2 (taglio di acciaio dolce con gas ossigeno/ ossigeno), assicurarsi che l'aria (AIR) sia connessa all'ingresso della gas console, poiché viene utilizzata come gas di "preflow".

• quando si seleziona una corrente di taglio superiore a **50A**, assicurarsi che l'aria (AIR) o l'azoto (N2) siano connessi all'ingresso della gas console (manuale o automatica) anche nel canale AUXILIARY.

3.4 Collegamento della torcia CP450G

3.4.1 Applicazioni su pantografo

• Collegare il fascio di tubi uscenti dalla torcia alla console valvole PVC (art.469) serrandoli alle rispettive uscite dei gas e seguendo l'ordine indicato dalla marcatura sugli stessi (vedi Fig. 18).

Assicurarsi, con l'uso di una squadra, che la torcia sia perpendicolare al piano di taglio del pantografo.
Inserire il cavo della torcia (art.1224, 1225 o) nell'Unità HV19-1 (art. 464) come mostrato nella parte destra di figura 19.

3.4.2 Applicazioni su robot

• Collegare il fascio di tubi uscenti dalla torcia alla unità accensione - console valvole HV19-PVC (art.462) serrandoli alle rispettive uscite dei gas e seguendo l'ordine indicato dalla marcatura sugli stessi.

• Assicurarsi, con l'uso di una squadra, che la torcia sia perpendicolare al piano di taglio del pantografo.

• Inserire il cavo della torcia (art.1222 o Art.1223) nell'unità accensione – console valvole HV19-PVC (art. 462) e procedere allo stesso modo descritto nel paragrafo precedente.

3.5 Requisiti del liquido refrigerante

Il generatore viene fornito con una quantità minima di liquido refrigerante: è cura del cliente riempire il serbatoio prima dell'uso dell'impianto.

Usare unicamente liquido refrigerante CEBORA (art. 1514) e leggere attentamente il MSDS per un suo uso sicuro ed una sua conservazione corretta.

L'ingresso del serbatoio, della capacità 10 litri, si trova nella parte posteriore del generatore, come mostrato in fig. 20.

Riempire sino al livello max e, dopo la prima accensione dell' impianto, rabboccare per compensare il volume di liquido presente nei tubi.

NOTA: durante l'uso dell'impianto e in particolare nella sostituzione della torcia o dei consumabili si hanno piccole perdite di liquido. Rabboccare settimanalmente sino al livello max.

NOTA: dopo 6 mesi il liquido refrigerante deve essere completamente sostituito, indipendentemente dalle ore di lavoro dell'impianto.

4 IMPIEGO

4.1 Descrizione dei pannelli dei generatori

Tramite la manopola **A** si accende l'intero impianto, la lampada **B** segnala tale operazione.

- A = interruttore di rete.
- B = lampada spia di rete.
- C = porta di ingresso seriale RS232.
- D = fusibile protezione pompa del circuito di raffreddamento (5A-250V-T).
- E = Passacavo per cavo rete.
- F = connettore CNC collegamento al pantografo.
- G = connettore CN03 collegamento alla Gas Console.
- H = tappo serbatoio liquido refrigerante.
- I = indicatore di livello liquido refrigerante.
- L = filtro mandata liquido refrigerante.

- M = rubinetto svuotamento serbatoio liquido refrigerante.
- N = innesto rapido tubo mandata liquido refrigerante.
- O = innesto rapido tubo ritorno liquido refrigerante.
- P = attacco torcia.
- Q = passacavo per cavo massa.
- R = filtro ritorno liquido refrigerante.
- S = connettore collegamento al pannello remoto.
- T = presa USB per aggiornare il firmware del generatore.

4.2 <u>Descrizione del pannello della gas console</u> <u>manuale e suo impiego</u>

Dal pannello della gas console si gestiscono tutte le funzioni dell'impianto. In particolare si seleziona il tipo di lavoro da effettuare ossia taglio (CUT), marcatura (MARK), oppure test di tenuta gas (TEST) dell'impianto.

A: Pulsante di selezione modalità di lavoro. Ad ogni pressione di questo pulsante si accende il led corrispondente alla scelta:

B: Led modalità taglio.

MARK C: Led modalità marcatura.

D: Led modalità test.

- E: Pulsante di selezione parametri da regolare. Ad ogni pressione di questo pulsante si accende il led corrispondente alla scelta:
- F: Led che segnala la modalità selezione del tipo di materiale da tagliare.
 G: Led che segnala la modalità sele
- GAS zione della combinazione gas PLASMA /SECONDARY.
- **H**: Led che segnala la modalità selezione dello spessore del materiale da tagliare.
- I: Led che segnala la modalità selezione della corrente di taglio.
- **L**: Led che segnala la modalità selezione della velocità di taglio.

- **M**: Led che segnala il diverso set di consu mabili-da utilizzare relativo alle selezioni precedenti.
 - 8 8 N: Display che visualizza i valori dei parametri in regolazione.
 - O: Manopola di regolazione dei parametri.
- **B B P**: Displa di tagl
 - P: Display che visualizza il tipo di gas plasma di taglio.
- **Q:** Dis secondary
 - Q: Display che visualizza il tipo di gas secondario di taglio.

88

38

- **R**: Display che visualizza la pressione del gas plasma durante il taglio.
- **S**: Display che visualizza la pressione del gas plasma in accensione.
 - T: Display che visualizza la pressione del gas secondario in accensione.
 - U: Display che visualizza la pressione del gas secondario durante il taglio.

(pre	SELEZIONE emendo il pulsante E)	DESCRIZIONE	SELEZIONE (ruotando la manopola O)
	MAT	tipo di materiale da tagliare	MS = Mild Steel SS = Stainless Steel AL = Aluminium
▼			
	GAS	combinazione di gas (PLASMA/SECONDARY) idonea al materiale scelto	AIR/AIR - O2/AIR O2/O2 - N2/N2 F5/N2 - H35/N2
▼			
	mm	Spessore del materiale da tagliare	Vedi tabelle di taglio
▼			
	A	Corrente di taglio suggerita per la combinazione (MAT/GAS/mm) scelta	Vedi tabelle di taglio
	m/min	Velocità di taglio suggerita per la combinazione (MAT/GAS/mm/A) scelta	Vedi tabelle di taglio
▼			
	• •	Set di consumabili da usare per la combinazione (MAT/GAS/mm/A) scelta	 STD (Standard) SPD (Speed) EXP QPC (Vedi tabelle di taglio)

Tab. 1

SELEZIONE (premendo il pulsante V)	DESCRIZIONE		REGOLAZIONE (ruotando la manopola Y)
SET	Accensione display R PLASMA CUTFLOW	CUTFLOW	Sino all'accensione contemporanea dei due led a freccetta X
SET	Accensione display S PLASMA PREFLOW	PREFLOW	Sino all'accensione contemporanea dei due led a freccetta X
SET	Accensione display T SECONDARY PREFLOW	CUTFLOW	Sino all'accensione contemporanea dei due led a freccetta X
•			
SET	Accensione display U SECONDARY CUTFLOW	PREFLOW	Sino all'accensione contemporanea dei due led a freccetta X

V: Pulsante di selezione dei canali gas plasma PRE/CUT FLOW e secondary PRE/CUT FLOW.

W: Pulsante di conferma impostazione parametri: console pronta per CUT, MARK o TEST.

X: Led di aiuto ricerca pressione corretta dei gas:
 -pressione bassa = led di sinistra acceso.
 -pressione alta = led di destra acceso.
 -pressione corretta = entrambi i led accesi.

- Y: Manopole di regolazione della pressione dei gas della console PGC-3.
- **Z**: Led che segnala l'attivazione della console PGC-2.

K: Manopola di regolazione della pressione dei gas della console PGC-2.

4.2.1 Preparazione ed esecuzione del taglio (CUT)

Dopo aver acceso l'impianto tramite l'interruttore posto sul pannello anteriore del generatore, l'accensione del led **B** CUT (vedi Fig. 21) indica che la macchina è in modalità "taglio". Occorre dapprima effetturare una serie di selezioni/regolazioni e pertanto assicurarsi che il tasto RUN non sia premuto (display PREFLOW e CUTFLOW di Fig.21 del flusso dei gas PLASMA e SECONDARY spenti). La prima predisposizione da effettuare, in sequenza, è la selezione indicata in tabella1.

Tenendo premuto il pulsante nella selezione della corrente (led I acceso), si entra in modalità fine indicata dal led lampeggiante. E' possibile quindi regolare la corrente, con step di 1A, in intervalli prefissati: [20-30 A], [40-50 A], [70-90A], [110-120A], [180-200 A], [230-250 A].

La seconda predisposizione da effettuare, in sequenza, è la regolazione indicata in tabella 2.

Ad una pressione del tasto SET, il flusso di gas, per ogni canale, è attivo per 10 s: dopodichè occorre ripremerlo se si vuole continuare la regolazione.

Ripremendo il pulsante SET dopo l'ultima regolazione, si esce dalla modalità di regolazione. Con una successiva pressione del pulsante si ritorna alla prima regolazione e cosi via.

I led a freccetta sotto il display del canale corrispondente indicano il senso di regolazione della manopola: se acceso quello di sinistra occorre incrementare il flusso (senso orario), viceversa per quello di destra (senso antiorario). Al raggiungimento del flusso corretto, in base alla selezione effettuata in Tab. 1, si ha l'accensione di entrambi.

Usciti dalla modalità regolazione, dopo le suddette predisposizioni, si deve premere il pulsante RUN: si accendono così tutti i display relativi ai canali PLASMA e SECONDA-RY e il generatore è pronto per il taglio. Nel caso sia stato selezionato il gas H35 o F5 si accende il led della gas console PGC-2. **N.B.** all'accensione dell'impianto, rimane memorizzata l'ultima impostazione di lavoro (i.e. MAT-GAS-mm-A). Se nella successiva regolazione si cambia il tipo di gas allora viene eseguito in automatico il "purge" ossia prima uno svuotamento dei tubi seguito da una successiva pulizia con flusso attivo per circa 10 s.

Dopo il segnale di start dal pantografo, si attiva in automatico la sequenza seguente:

-Preflow di 0.5 s con il gas selezionato.

-Impulso di Alta tensione / Alta frequenza.

-Accensione dell'arco pilota.

-Trasferimento dell'arco plasma (invio al CNC del segnale "arc transfer").

-Inizio del movimento sul piano x-y del CNC al termine del "pierce delay time".

Al segnale di stop dal pantografo, si attiva in automatico la sequenza seguente:

-Spegnimento dell'arco plasma.

-Termine del movimento sul piano x-y del CNC.

-Postflow con il gas selezionato.

4.2.2 Preparazione ed esecuzione della marcatura (MARK)

Dopo aver acceso l'impianto tramite l'interruttore posto sul pannello anteriore del generatore, l'accensione del led MARK indica che la macchina è in modalità "marcatura". Occorre dapprima effetturare una serie di selezioni/regolazioni e pertanto assicurarsi che il tasto RUN non sia premuto (display PREFLOW-CUTFLOW di Fig.21 del flusso dei gas PLASMA e SECONDARY spenti).

La prima predisposizione da effettuare, in sequenza, è quella di Tab. 3. Per la seconda predisposizione ci si riferisce a quella di Tab. 2 con le relative note.

SEL (prer puls	EZIONE mendo il sante E)	DESCRIZIONE	SELEZIONE (ruotando la manopola O)
	MAT	tipo di materiale da marcare	MS = Mild Steel SS = Stainless Steel AL = Aluminium
	GAS	combinazione di gas (PLASMA/SECON- DARY) idonea al materiale scelto	Ar/Ar
▼			
	A	Corrente di taglio suggerita per la combinazione (MAT/ GAS/mm) scelta	Vedi tabelle di taglio

Tab. 3

4.2.3 Esecuzione del test di tenuta gas (TEST) Dopo aver acceso l'impianto tramite l'interruttore posto sul pannello anteriore del generatore, l'accensione del led TEST indica che la macchina è in modalità "test". Si deve eseguire periodicamente il test di tenuta, da T01 a T05, per verificare eventuali perdite di gas nei tubi, dall'ingresso di essi nella parte posteriore della gas console sino all'ingresso della console valvole. Inoltre il test di flusso TF6 permette di verificare il flusso del canale ausiliario AUX.

E' possibile verificare ogni canale singolarmente, come mostrato in Tab. 4:

SELEZIONE (ruotando la manopola O)	DESCRIZIONE
TOI	Test canale air / air
<u>507</u>	Test canale N2 / N2
TOJ	Test canale O2 / O2
TOY	Test canale H35 /
T05	Test canale Ar / Ar
TF5	Test canale AUX
RLL	Test completo (sequenza automatica temporizzata di T01, T02, T03, T04, T05, T06)

Tab. 4

Alla pressione del tasto RUN, si avvia il test selezionato: la macchina esegue dapprima un "purge", poi vengono riempiti i tubi con il gas e successivamente disattivate le elettrovalvole di INLET GAS e quelle presenti nella console valvole.

Se non vengono rilevate perdite durante il tempo di test, ad esempio con AIR/AIR, il display della gas console mostra il messaggio OK AIR (idem per gli altri gas: OK N2, OK O2, OK H35 e OK Ar).

Nel caso sia stato selezionato il test T04, si accende, durante il TEST, il led della gas console PGC-2.

4.2.4 Funzioni aggiuntive (Seconde funzioni)

Nelle descrizioni seguenti, ci riferiremo alla Fig.21. Ad impianto acceso ed in modalità inattiva (no RUN: display **R,S,T,U** spenti), entrare nel menù "seconde funzioni" premendo contemporaneamente i tasti **A** ed **E**.

4.2.4.1 Preparazione ed esecuzione della Marcatura Spot (SPOT MARK)

La marcatura spot è un particolare tipo di marcatura ove la traccia consiste in un punto, a differenza di una linea o un qualunque disegno propri della marcatura normale (vedi modalità di lavoro MARK, par.4.2.2).

Dopo aver impostato alcuni parametri dalla gas console, è possibile gestire ed eseguire la marcatura spot direttamente dal CNC, mantenendo gli stessi parametri di taglio e gli stessi consumabili.

Regolare i parametri di spot marking sottoindicati, selezionabili in successione premendo il pulsante **E**:

Dopo le regolazioni sopradescritte, tramite un segnale digitale sui pin relativi (vedi Fig.14) si passa dalla modalità taglio a quella della marcatura spot (CUT/SPOT MARK).

SEL (prei puls	EZIONE mendo il sante E)	DESCRIZIONE	SELEZIONE (ruotando la ma- nopola O)
	SEN	Spot Enable (abilita/disabilita la funzione di marcatura spot)	OFF = disabilitata ON = abilitata
▼			
	SI	Spot Current (corrente di marcatura spot)	Da 10 a 39 A
	ST	Spot Time (tempo di marcatura spot)	OFF* Da 0.01 a 1.00 s

Tab. 5

* in tal caso, la durata dello spot viene gestita tramite il segnale di Start/Stop del pantografo. Se, viceversa, viene impostato il tempo, allora tale valore rappresenta la durata massima dello spot dal segnale di arco trasferito.

4.2.4.2 Gestione della corrente negli angoli del pezzo in lavorazione (CORNER)

La riduzione della corrente negli angoli del pezzo in lavorazione è una funzionalità utile quando associata alla riduzione della velocità di taglio negli stessi. In tal modo si elimina l'eccessiva rimozione di metallo nell'angolo. Dopo aver impostato alcuni parametri dalla gas console, è possibile gestire ed eseguire la funzione Corner direttamente dal CNC, mantenendo gli stessi parametri di taglio e gli stessi consumabili.

Regolare i parametri di corner sottoindicati, selezionabili in successione premendo il pulsante **E**.

SELE (prem pulsa	ZIONE nendo il ante E)	DESCRIZIONE	SELEZIONE (ruotando la manopola O)
	CEN	Corner Enable (abilita/disabilita la funzione corner)	OFF = disabilitata ON = abilitata
▼			
	CI	Corner Current (percentuale della corrente di corner rispetto alla corrente di taglio)	Dal 50 al 100% *
▼			
	CSD	Corner Slope Down (pendenza della ram- pa di discesa della corrente)	Da 1 a 100 A/ (s/100)
▼			
	CSU	Corner Slope Up (pendenza della rampa di salita della corrente)	Da 1 a 100 A/ (s/100)

Tab. 6

* La regolazione della corrente di corner è subordinata alla posizione dello switch #2 del banco DIP3 presente nella scheda remote (vedi Fig.15).

Con lo switch #2 in posizione OFF (configurazione predefinita) il valore della corrente di corner è regolato direttamente dal pantografo attraverso il relativo ingresso analogico (0-10V) (vedi kit opzionale art.425) secondo la relazione descritta in tabella 7

INGRESSO ANALOGICO	CORRENTE DI CORNER	VALORE ATTUATO		
OV	50%	1/2 della corrente di taglio		
5V	75%	³ ⁄4 della corrente di taglio		
10V	100%	uguale alla corrente di taglio		
T.I. 7				

Tab. 7

Qualora tale ingresso analogico (0-10V) sia disconnesso, il valore della corrente di corner rimane fissato al valore 50% (default) della corrente di taglio. Viceversa con lo switch #2 in posizione ON l'ingresso analogico sopradescritto viene ignorato dal generatore e l'operatore può regolare il valore della corrente di corner direttamente dal pannello della gas console agendo sulla manopola **O**.

Nella figura di seguito riportata, temporizzazione dei segnali:

4.2.4.3 Gestione del tempo di raffreddamento della torcia a fine taglio

Al termine di ogni taglio del pezzo in lavorazione, si riattiva il flusso di gas secondario per raffreddare la torcia. La durata di tale flusso dipende dalla corrente di taglio e aumenta in funzione della corrente stessa.

A volte, per particolari lavorazioni, può essere utile ridurre tale durata.

L'operatore può regolare il valore del tempo di Post-Flow (PoF) direttamente dal pannello della gas console agendo sulla manopola **O**. In particolare, può ridurre tale tempo dalla durata massima, dipendente dalla corrente di taglio impostata, sino ad un minimo di 5 secondi.

SELEZIONE		DESCRIZIONE SELEZIONE	
(premendo il		(ruotando la	
pulsante E)		manopola O	
	PoF	Post Flow (durata del flusso di raffreddamen- to della torcia a fine taglio)	Da 5 a T s (T=durata max. in secondi, dipen- dente dalla cor- rente di taglio)

4.2.4.4 Visualizzazione portata e temperatura del liquido refrigerante (H2O)

In tale modalità è possibile visualizzare la portata/temperatura, sul display N/Q, in litri/min/°C, del liquido di raffreddamento; solitamente il suo valore è di circa 3 litri/ minuto.

4.2.4.5 Esecuzione del taglio su lamiere forate o grigliati (SR)

Per tagliare lamiere forate o grigliati, risulta spesso utile attivare la funzione Self Restart. Con tale funzione attivata, il generatore riaccende l'arco ogni volta che questo si interrompe. Occorre predisporre inoltre il pantografo per tagli di questo tipo.

4.2.4.6 Regolazione fine della corrente a distanza (RRI)

Tale funzionalità, presente comunque nel menù "seconde funzioni" della gas console, necessita del kit opzionale art.425.

Fare riferimento al manuale istruzioni di quest'ultimo per la descrizione completa.

4.3 <u>Descrizione del pannello della gas console</u> <u>manuale PGC-D e suo impiego</u>

Dal display della gas console PGC-D si gestiscono tutte le funzioni dell'impianto. In particolare, si effettua la configurazione dei parametri di taglio e l'impostazione dello stato di RUN. Tutti i parametri di processo (materiale, gas, spessore e corrente) sono selezionabili dal displav e. in base alla loro scelta, vengono automaticamente indicati i consumabili corretti e le indicazioni dei flussi ottimali dei gas. Per un taglio ottimale di ogni materiale metallico, l'impianto utilizza diversi tipi di gas, guali: aria, azoto N2, ossigeno O2; inoltre, miscela H35 (35% idrogeno H2 - 65% argon Ar) e miscela F5 (5% idrogeno H2 - 95% azoto N2) con l'unità accessoria PGC-H2 art.487; inoltre, acqua H2O nel canale secondary con l'unità accessoria WSC art.485. Le combinazioni dei diversi gas vengono proposte in automatico in funzione del materiale scelto. E' possibile poi eseguire la marcatura, presentata in automatico con il gas argon Ar.

Dal display della PGC-D, si effettuano le seguenti:

- selezione ed impostazione dei parametri relativi al lavoro da effettuare: bulinatura (SPOT), taglio (CUT) e marcatura (MARK);

- attivazione del generatore all'esecuzione del taglio: tasto RUN;

- visualizzazione informazioni sulla configurazione dell'impianto e sul suo stato.

La schermata principale del display della gas console PGC-D si presenta come un insieme di 6 schede superiori (Menù, Tabelle di taglio, SPOT, CUT, MARK, RUN), 4 laterali sinistre (Parametri CNC, stato generatore, impostazioni generatore, Informazioni del sistema e 3 inferiori, di seguito descritte.

Fig.1

4.3.1 Setup dell'impianto

Parametri del CNC/Robot

La figura sottostante mostra i parametri di taglio relativi all'impostazione Materiale, Gas, Spessore, Corrente effettuata. Tali parametri si trovano altresì nelle tabelle di taglio allegate alla torcia.

		SPOT	CUT	MARK	RUN	
(fichi)	CNC Parameters					
	Arc Voltage			148	V	
· · ·	Cutting Speed			2200 mm/min		
	Cutting Heig	ht		3.5	mm	
\sim n	Ignition Heig	ht		6.0	mm	
	Pierce Height			6.0 mm		
\bigcirc	Pierce Delay			0.6	S	
	Kerf Width			2.6 mm		
日日南	Edge Start			NO		
	Marking Voltage			75	V	
~	Marking Speed			1500	mm/min	
$\langle \cdot \cdot \rangle$	Marking Height			2.0	mm	

Stato dell'impianto

La figura sottostante mostra diverse informazioni dell'impianto per quanto riguarda la sua composizione ed alcuni parametri significativi in tempo reale.

		SPOT	CUT	MARK	RUN
£1.	Power Source Status			0.0	V
Arc current Coolant Flow Coolant Temperature Aux Press				3.1 25.0 5	A I/min °C
	Power Sourd Serial Numb Firmware Ve	ce Model er ersion		Art.949 P1234F 007	
╡ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇	Cutting Charts Torch Model Gas Cable Length			6.0 CP455G 12 m	
i	Plasma Valve Console Water Secondary Console External Interface			Art.469 OFF Analog	

Fig.3

Nelle prime cinque voci si possono visualizzare:

- Tensione d'Arco = tensione tra elettrodo e pezzo da tagliare/marcare; - Corrente d'Arco = corrente di taglio/marcatura;

- Portata del Liquido = portata del liquido di raffreddamento;

- Temperatura del Liquido = temperatura del liquido di raffreddamento;

- Pressione Ingresso gas ausiliario = pressione dell'aria in ingresso alla gas console.

Nelle seconde nove voci si possono visualizzare:

- Articolo, matricola e versione firmware del generatore dell'impianto;

- Numero di versione delle tabelle di taglio

- Modello della torcia e lunghezza del cavo gas dell'impianto;

- Modello di unità valvole dell'impianto;

- Abilitazione/disabilitazione della Water Secondary Console art.485 (opzionale);

- Le impostazioni dell'interfaccia verso il CNC/Robot.

Setup generatore

La figura sottostante mostra parametri aggiuntivi per le funzioni avanzate. Tali funzioni vengono descritte nei paragrafi successivi.

Fig.4

Gestione della corrente negli angoli del pezzo in lavorazione (Corner).

La riduzione della corrente negli angoli del pezzo in lavorazione, è una funzionalità utile quando associata alla riduzione della velocità di taglio negli stessi. In tal modo si elimina l'eccessiva rimozione di metallo nell'angolo. E' possibile abilitare o disabilitare la funzione Corner direttamente dal CNC/Robot, mantenendo gli stessi parametri di taglio e gli stessi consumabili. I parametri della funzione Corner (vedi Fig. 4) vengono regolati agendo sui tasti:

- Corrente di Corner = percentuale della corrente di corner rispetto alla corrente di taglio [50-100%];

- Corner Slope Down = pendenza della rampa di discesa della corrente nell'intervallo [0.1-10.0 A/ms];

- Corner Slope Up = pendenza della rampa di salita della corrente nell'intervallo [0.1-10.0 A/ms].

La regolazione della corrente di Corner è subordinata ad un flag che discrimina se il parametro è gestito direttamente dal CNC oppure dal pannello (vedi manuale istruzione relativo ai protocolli digitali per plasma HQC, cod.3.300.056). Di seguito, si riporta la temporizzazione dei segnali per la funzione Corner:

Figura temporizzazione CORNER

Esecuzione del taglio su lamiere forate o grigliati (Self Restart)

Per tagliare lamiere forate o grigliati, risulta spesso utile abilitare la funzione "Self Restart". Con tale funzione attivata (Self Restart = Abilitato), il generatore riaccende l'arco ogni volta che questo si interrompe. Occorre predisporre inoltre il pantografo per tagli di questo tipo.

In tale schermata sono inoltre presenti i tasti TEST e Advanced Setting.

Premendo il tasto TEST si entra nella scheda relativa dove è possibile eseguire il test di tenuta del gas. Dopo aver selezionato il tipo di gas nel riquadro Test, alla pressione del tasto Start si avvia il test relativo: la macchina esegue dapprima un "purge", poi vengono riempiti i tubi con il gas e successivamente disattivate le elettrovalvole di INLET GAS e quelle presenti nella console valvole. Se non vengono rilevate perdite durante il tempo di test, i segni di spunta sotto ogni canale divengono verdi. Viceversa, in caso di perdite da uno o più canali, appare una croce rossa sotto il canale corrispondente.

Si deve eseguire periodicamente il test di tenuta, su tutti i tipi gas, per verificare eventuali perdite nei tubi, dall'ingresso di essi nella parte posteriore della gas console sino all'ingresso della console valvole.

Premendo il tasto Advanced Setting si entra nella scheda relativa dove è possibile impostare diversi componenti dell'impianto, quali ad esempio il tipo di torcia e la lunghezza dei tubi.

4.3.2 Preparazione ed esecuzione del taglio (CUT)

Dopo aver acceso l'impianto tramite l'interruttore posto sul pannello anteriore del generatore, trascorsi alcuni secondi appare la scheda di Fig.1. Viceversa, se c'è un problema di comunicazione con il generatore, nello schermo appare la scritta Waiting.....

La prima predisposizione da effettuare, in sequenza, è la selezione indicata in Fig. 2 (scheda Tabelle di taglio).

Scegliere il tipo di materiale premendo il tasto sotto la dicitura Materiale: vengono così proposte le relative combinazioni di gas ammesse. Dopo la selezione del gas, premendo il tasto sotto la dicitura Gas, occorre scegliere lo spessore e la corrente di taglio. Il sistema mostra in automatico l'insieme di consumabili adatti per tali impostazioni e relative al tipo di torcia in uso (nell'esempio, la torcia CP455G).

La seconda predisposizione da effettuare, in sequenza, è la selezione indicata in figura 3 (scheda CUT). Il tipo di lavorazione corrente è impostato dal CNC "runtime": se esso è in modalità taglio allora appare la scritta CUT in rosso anziché bianco. Premesso che il sistema si predispone, in automatico, con l'indicazione dei flussi e la corrente indicati nelle tabelle di taglio (vedi manuale istruzioni cod.3.301.097), è possibile variare tali parametri entro determinati intervalli.

Fig.3

Si possono regolare i flussi, per ogni canale, toccando l'area numerica del canale stesso e attivando in tal modo il flusso di gas. Poi, agendo sulla manopola del riduttore di pressione corrispondente, la si ruota sino a portare il cursore nella zona centrale. Ripremendo l'area numerica, si interrompe il flusso di gas.

Il valore numerico di ogni canale indica la pressione reale del flusso uscente dalla torcia.

Qualora il valore di pressione impostata sia esterno all'intervallo consigliato, la barra sottostante il valore numerico diviene di colore rosso; viceversa, la barra diviene di colore verde.

E' possibile regolare la corrente di taglio agendo sui tasti "+" e "-" posti a fianco del relativo valore numerico. In particolare, si regola con passi di 1 A.

Terminata la fase di impostazione dei valori sopra descritti, si deve premere il tasto RUN per attivare il generatore all' esecuzione del taglio. Così, il tasto RUN passa da colore bianco a giallo e infine a colore verde (vedi Fig.4 e Fig.5).

Fig.5

N.B. all'accensione dell'impianto, rimane memorizzata l'ultima impostazione di lavoro (i.e. Materiale-Gas-Spessore-Corrente). Se nella successiva regolazione si cambia il tipo di gas e si ripreme tasto RUN, allora esso passa dapprima a colore giallo durante l'esecuzione in automatico del purge ossia uno svuotamento dei tubi.

Quando il sistema è pronto, il tasto RUN passa da colore giallo a verde.

4.3.3 Preparazione ed esecuzione della bulinatura (SPOT)

La bulinatura o marcatura spot è un particolare tipo di marcatura ove la traccia consiste in un punto, a differenza di una linea o un qualunque disegno propri della marcatura normale (vedi più avanti, modalità di lavoro MARK). E' possibile abilitare o disabilitare la bulinatura direttamente dal CNC/Robot, tramite il relativo segnale, mantenendo gli stessi parametri di taglio e gli stessi consumabili. I parametri di bulinatura (vedi Fig. 6) vengono regolati agendo: - sul tasto della Corrente immettendo un valore nell'intervallo $10 \div 39$ A;

- sul tasto del Tempo Spot immettendo un valore nell'intervallo 0.01 \div 1.00 s.

Fig.6

4.3.4 Preparazione ed esecuzione della marcatura (MARK)

Dopo aver acceso l'impianto tramite l'interruttore posto sul pannello anteriore del generatore, trascorsi alcuni secondi appare la scheda di Fig.1. Viceversa, se c'è un problema di comunicazione con il generatore, nello schermo appare la scritta "Waiting......"

La selezione indicata in Fig. 2 (scheda Tabelle di taglio) è la stessa della modalità CUT (vedi manuale istruzioni cod.3.301.097).

La predisposizione da effettuare è la selezione indicata in figura 7 (scheda MARK).

Il tipo di lavorazione corrente è impostato dal CNC "runtime": se esso è in modalità taglio allora appare la scritta CUT in rosso anziché bianco. Premesso che il sistema si predispone, in automatico, con l'indicazione dei flussi e la corrente indicati nelle tabelle di taglio (vedi manuale istruzioni cod.3.301.097), è possibile variare tali parametri entro determinati intervalli.

Fig.7

Si possono regolare i flussi, per ogni canale, toccando l'area numerica del canale stesso e attivando in tal modo il flusso di gas. Poi, agendo sulla manopola del riduttore di pressione corrispondente, la si ruota sino a portare il cursore nella zona centrale. Ripremendo l'area numerica, si interrompe il flusso di gas.

Il valore numerico di ogni canale indica la pressione reale del flusso uscente dalla torcia.

Qualora il valore di pressione impostata sia esterno all'intervallo consigliato, la barra sottostante il valore numerico diviene di colore rosso; viceversa, la barra diviene di colore verde.

E' possibile regolare la corrente di marcatura agendo sui tasti "+" e "-" posti a fianco del relativo valore numerico. In particolare, si regola con passi di 1 A.

Terminata la fase di impostazione dei valori sopra descritti, si deve premere il tasto RUN per attivare il generatore all' esecuzione della marcatura. Così, il tasto RUN passa da colore bianco a giallo e infine a colore verde.

4.4 <u>Descrizione del pannello della gas console</u> <u>automatica</u>

Il pannello anteriore della gas console automatica presenta un led multifunzione, il quale ne definisce il suo stato. In particolare:

Fase	Colore LED	Descrizione	
	Spento	Assenza di alimen- tazione della scheda elettronica interna	
Accensione del generatore	Rosso fisso	Problemi al micropro- cessore della scheda elettronica interna	
	Rosso/Verde alternato	Attesa della comuni- cazione con il gene- ratore	
A regime	Rosso/Verde alternato lento	Mancata comunica- zione con il genera- tora	
	Verde fisso	Funzionamento regolare	

A=led multifunzione

Per la gestione della gas console automatica (configurazione dei parametri di taglio e impostazione dello stato di RUN) occorre collegare il pannello remoto art.460. Fare riferimento al manuale istruzioni di tale articolo per la descrizione del funzionamento.

Viceversa, con una interfaccia digitale CANopen tra pantografo/robot e generatore ed in assenza del art.460, occorre avere un applicativo specifico sul controllo.

4.5 Codici di errore

DESCRIZIONE ERRORE	CODICE	POSSIBILE SOLUZIONE
Errore durante l'aggiornamento del firmware da USB	USB (Err. 85)	Contattare il servizio assistenza CEBORA.
Start premuto all'accensione oppure al riarmo (passaggio alla modalità RUN) del generatore	TRG (Err. 53)	Spegnere il generatore, rimuovere il comando di start e riaccendere il generatore.
Sovratemperatura del liquido di raffredda- mento	H20 T (Err. 93)	Verificare eventuali occlusioni dei tubi del circuito di raffreddamento o della torcia. Controllare l'integrità del fusibile della pompa. Pulire il radiatore.
Sovra temperatura dei moduli: IGBT 1 / IGBT 2 / IGBT 3 / IGBT 4	TH1 (Err. 74) TH2 (Err. 77) TH3 (Err. 72) TH4 (Err. 71)	Non spegnere il generatore, per mantenere il ventilatore in funzione ed avere così un rapido raffreddamento. Il ripristino del normale funzionamento avviene automatica- mente al rientro della temperatura entro i limiti consentiti. Se il problema persiste, contattare il Servizio Assistenza CEBORA.
Flusso inferiore al limite minimo del liquido di raffreddamento	H2O (Err 75)	Verificare eventuali occlusioni dei tubi del circuito di raffreddamento o della torcia. Controllare l'integrità del fusibile della pompa. Pulire il radiatore.
Pressione bassa in un canale di alimentazione gas	GAS LO (Err. 78)	Aumentare la pressione del gas corrispondente tramite la manopola posta sul pannello frontale della gas console. Verificare altresì la pressione di alimentazione del gas, la quale deve essere circa 8 bar.
Sportello aperto nel generatore o nel modulo di accensione HV19-1 o HV19-PVC	OPN (Err. 80)	Controllare la corretta chiusura del coperchio del generatore e/o dell'unità HV19-1 o HV19-PVC.
CNC spento, in emergenza oppure non connesso al generatore	rob (Err. 90)	Accendere il CNC, uscire dall'emergenza, controllare il collegamento generatore-CNC.
Sovratemperature del trasformatore di poten- za	TH0 (Err. 73)	Non spegnere il generatore, per mantenere il ventilatore in funzione ed avere così un rapido raffreddamento. Il ripristino del normale funzionamento avviene automatica- mente al rientro della temperatura entro i limiti consentiti. Se il problema persiste, contattare il Servizio Assistenza CEBORA.
Errore interno nella memoria del microprocessore	Err 2	Contattare il Servizio Assistenza CEBORA.
Il generatore non comunica con la gas console o con il gruppo di raffreddamento	Err 6	Verificare il collegamento tra il generatore e la gas console oppure il gruppo di raffreddamento. Se il proble- ma persiste, contattare il Servizio Assistenza CEBORA.
Il generatore non comunica con il circuito interfaccia	Err 7	Contattare il Servizio Assistenza CEBORA.
La gas console non comunica con il generatore	Err 9	Verificare il collegamento tra il generatore e la gas console. Se il problema persiste, contattare il Servizio Assistenza CEBORA.
Tensione continua inferiore al valore minimo accettato	Err 16	Contattare il Servizio Assistenza CEBORA
Problema sull'orologio interno	Err 26	Contattare il servizio assistenza CEBORA.
Errore di scrittura nella memoria flash del generatore	Err 27	Contattare il servizio assistenza CEBORA.
Rilevata corrente, ad arco spento, sul modulo IGBT1	Err 30	Contattare il Servizio Assistenza CEBORA
CODICE	POSSIBILE SOLUZIONE	
--------	---	
OODIOL		
Err 35	Contattare il Servizio Assistenza CEBORA	
Err 39	Contattare il Servizio Assistenza CEBORA	
Err 40	Contattare il Servizio Assistenza CEBORA	
Err 49	Contattare il Servizio Assistenza CEBORA	
Err 55	Sostituire elettrodo e/o ugello. Verificare il corretto montaggio dei consumabili in relazione al tipo di lavoro. Controllare altresì la correttezza del gas di taglio.	
Err 58	Contattare il Servizio Assistenza CEBORA	
Err 67	Verificare i fusibili del quadro elettrico dove è collegato il cavo rete del generatore. Se il problema persiste, contattare il Servizio Assistenza CEBORA.	
Err 79	Controllare i consumabili o ridurre la pressione di alimentazione.	
Err 81	Contattare il Servizio Assistenza CEBORA	
Err 82	Verificare il collegamento tra il modulo PGC-3 oppure APGC-1 (quello superiore) e il modulo PGC-2 oppure APGC-2 (quello inferiore)	
Err 31	Contattare il Servizio Assistenza CEBORA	
Err 36	Contattare il Servizio Assistenza CEBORA	
	CODICE Err 35 Err 39 Err 40 Err 40 Err 55 Err 58 Err 58 Err 79 Err 79 Err 81 Err 82 Err 31 Err 36	

4.6 Qualità del taglio

Diversi sono i parametri e le combinazioni di essi che influenzano la qualità del taglio: nel presente manuale sono indicate, nella sezione Tabelle di Taglio, le regolazioni ottimali per il taglio di un determinato materiale. Tuttavia, a causa delle inevitabili differenze dovute all'installazione su diversi pantografi e alla variazione delle caratteristiche dei materiali tagliati, i parametri ottimali possono subire piccole variazioni rispetto a quelli indicati nelle tabelle suddette. I punti seguenti possono aiutare l'utilizzatore ad apportare quelle piccole variazioni necessarie all'ottenimento di un taglio di buona qualità.

Come mostrato nelle tabelle di taglio, vi sono diversi set di consumabili in funzione della corrente di taglio e dei gas usati.

Se prevalgono esigenze di alta produttività, quindi necessità di alte velocità di taglio, impostare la massima corrente permessa e quindi l'ugello di diametro più grande. Viceversa, se l'attenzione è rivolta alla qualità del taglio (maggiore squadratura e solco di taglio (kerf) più stretto) impostare la minima corrente permessa per il materiale e lo spessore in lavorazione.

Prima di effettuare qualsiasi regolazione, verificare che: La torcia sia perpendicolare al piano di taglio.

Elettrodo, ugello, portaugello H2O e protezione ugello non siano eccessivamente usurati e che la loro combinazione sia rispondente al lavoro scelto.

La direzione di taglio, in funzione della figura da ottenere, sia corretta. Ricordare che il lato migliore di un taglio è sempre quello destro rispetto alla direzione di moto della torcia (il diffusore plasma usato ha i fori in senso orario).

Nel caso si debbano tagliare alti spessori, particolare attenzione deve essere posta durante la fase di sfondamento: in particolare, cercare di togliere l'accumulo di materiale fuso attorno al foro di inizio taglio, in modo da evitare fenomeni di doppio arco quando la torcia ripassa per il punto di partenza. Inoltre, tenere sempre pulita la protezione ugello da eventuali scorie di metallo fuso che vi hanno aderito.

La tabella 8 indica alcune delle problematiche più frequenti e la relativa soluzione.

PROBLEMA	CAUSA	SOLUZIONE
	Elettrodo od ugello usurati	Sostituire entrambi
Taglio inclinato	Stand off troppo alto	Abbassare lo stand off
	Velocità di taglio troppo alta	Regolare la velocità
	Velocità di taglio troppo alta	Regolare la velocità
	Ugello con diametro troppo grande rispetto alla corrente impostata	Controllare le Tabelle di Taglio
Insufficiente penetrazione	Spessore eccessivo del pezzo in lavorazione in rapporto alla corrente impostata	Aumentare la corrente di taglio
	Cavo di massa non in buon contatto elettrico con il piano di taglio	Verificare il serraggio del terminale di massa al CNC
	Velocità di taglio troppo bassa	Regolare la velocità
Presenza di "bave di bassa velocità" *	Corrente di taglio troppo alta	Diminuire la corrente di taglio
	Stand off troppo basso	Alzare lo stand off
	Velocità di taglio troppo alta	Regolare la velocità
Presenza di "bave di alta velocità" **	Corrente di taglio troppo bassa	Aumentare la corrente di taglio
	Stand off troppo alto	Abbassare lo stand off
Rordo di taglia arrotondata	Velocità di taglio troppo alta	Regolare la velocità
	Stand off troppo alto	Abbassare lo stand off

* Le bave di bassa velocità (low speed dross) sono bave spesse, di forma globulare, facilmente rimovibili. Il solco di taglio (kerf) risulta piuttosto ampio.

** Le bave di alta velocità (high speed dross) sono bave sottili, difficili da rimuovere. La parete del taglio, nel caso di velocità molto alta, risulta piuttosto rugosa.

4.7 Manutenzione dell'impianto

Una corretta manutenzione dell'impianto assicura le prestazioni ottimali e allunga la vita di tutti i suoi componenti, comprese le parti consumabili. Pertanto, si consiglia di eseguire le operazioni elencate nella tabella seguente.

Periodo	Operazioni di manutenzione
Giornalmente	Controllare la corretta pressione dei gas di alimentazione
	Controllare il corretto funzionamento delle ventole del generatore, del gruppo di raffreddamento e della gas console
Settimanal- mente	Controllare il livello del liquido refrigerante
	Pulire i filetti della torcia e controllare che non vi siano segni di corrosione o scariche elettriche
Mensilmente	Controllare le connessioni gas, acqua ed elettriche riguardo a screpolature, abrasioni o perdite
	Eseguire il programma TEST tramite la gas console.
	Sostituire il liquido refrigerante presente nell'impianto
Semestral-	Pulire i filtri, esterni e del serbatoio, del gruppo di raffreddamento;
mente	Pulire il filtro della gas console
	Sostituire gli O-ring della torcia, ordinan- do il kit art.1400

Se, in seguito ad un controllo, si nota un componente eccessivamente usurato o un suo funzionamento non regolare, contattare il Servizio Assistenza CEBORA.

Per una manutenzione delle parti interne dei diversi componenti l'impianto, richiedere l'intervento di personale qualificato. In particolare, si consiglia di eseguire periodicamente le operazioni di seguito elencate.

Per tutti i componenti:

- Pulire l'interno con aria compressa (pulita, secca e senza olio) per eliminare gli accumuli di polvere. Se possibile, usare un aspiratore;
- Controllare che le connessioni elettriche siano ben serrate e non presentino surriscaldamenti.

Per ogni componente:

Componento	Operazioni di manutenzione
Componente	Operazioni di manutenzione
Generatore	Pulire con aria compressa i radiatori dei moduli IGBT, dirigendo il getto d'aria su di essi .
Gruppo di	Pulire con aria compressa il radiatore, dirigendo il getto d'aria su di esso.
mento	Controllare il circuito idraulico interno riguardo a screpolature o perdite.
Gas console	Controllare il circuito pneumatico interno riguardo a screpolature o perdite.
Console valvole	Controllare il circuito pneumatico interno riguardo alle perdite.
Unità di ac- censione	Controllare che lo spinterometro non presenti annerimenti eccessivi e sia rispettata la corretta distanza tra le puntine;
	Controllare il circuito idraulico interno riguardo a screpolature o perdite.

Verificare inoltre, periodicamente, la messa a terra dell'impianto. In particolare, seguendo lo schema di fig.24, controllare che ogni cavo sia ben serrato tra vite e dado relativi.

5 <u>APPENDICE</u>

5.1 Kit opzionale (art. 425) Per la connessione al pantografo

Per il montaggio del kit Art. 425 fare riferimento all' istruzione relativa.

5.2 Schema di messa a terra dell'impianto (Fig. 24)

Usare cavi di terra di sezione pari o superiore a 16 mm2

Fig. 24

5.3 Misura dei livelli di pressione sonora

Il processo del taglio plasma produce livelli dannosi di rumore per l'orecchio umano e quindi occorre indossare adeguate protezioni, per esempio cuffie o tappi, conformi ai regolamenti nazionali o locali.

Le misure riportate nella tabella sottostante, relative al mild steel ed effettuate alle distanze indicate, possono aiutare il responsabile della sicurezza ad adottare tutte le misure previste per rendere sicuro l'ambiente di lavoro (fare riferimento, ad esempio, alla normativa internazionale IEC 60974-9).

Materiale	Gas di taglio	Spessore	Corrente di taglio	Velocità di taglio	Distanze di misura (di fronte alla sorgente x sopra la sorgente)	Livello di pres- sione sonora ponderato A LpA	Livello di picco della pressione sonora ponderato C LpC, peak
		(mm)	(A)	(m/min)	(m x m)	(dB)	(dB)
Acciaio dolce	O2/air	25	120	0.4	1 x 0.5	105.0	119.7
Acciaio dolce	O2/air	25	120	0.4	2 x 0.5	100.5	114.6
Acciaio dolce	O2/air	25	120	0.4	3 x 0.5	99.2	113.3
Acciaio dolce	O2/air	40	250	0.5	1 × 0.5	111 0	125.0
Acciaio dolce	O2/air	40	250	0.5	2 x 0.5	108.1	123.0
Acciaio dolce	02/air	40	250	0.5	3 x 0.5	106.5	120.3
Acciaio dolce	02/air	50	400	0.8	1 x 0.5	114.2	129.5
Acciaio dolce	O2/air	50	400	0.8	2 x 0.5	108.9	124.1
Acciaio dolce	O2/air	50	400	0.8	3 x 0.5	107.1	122.9

Le misure, della durata di 1 minuto ciascuna, sono state effettuate al chiuso, in ambiente riverberante, presso i laboratori di CEBORA S.p.A.

I dati rilevati non tengono conto di eventuali correzioni dovute a rumori di fondo o alle dimensioni del locale di prova. I livelli di pressione sonora LpA e LpC, peak sono definiti dalla normativa internazionale di settore (vedi IEC 11202 e IEC 61672-1).

CONTENTS

1	SAFETY PRECAUTIONS	;
1.1	WARNING LABEL	;
2	TECHNICAL SPECIFICATIONS	,
2.1	GENERAL DESCRIPTION OF THE SYSTEM	,
2.2 2.2.1 5.2.1	PLASMA POWER SOURCE48Plasma Prof 166 HQC power source - Art.94848Plasma Prof 255 HQC Power Source - Art.94949	}
2.3 2.3.1 2.3.2 2.3.3	GAS CONSOLE)
2.4	PVC VALVE CONSOLE - ART 469	;
2.5	IGNITION UNIT HV19-1- ART 464	;
2.6	Ignition unit – HV19-PVC robot valve console - art 462	ł
2.7	Ignition unit – HV19-PVC CNC valve Console - art.459	5
2.8	СР450G Токсн - Акт. 1223-1224-1225 56	5
2.9	WATER CONSOLE - ART. 485	5
2.10	GAS CONSOLE PGC-H2 - ART.487	5
2.11	HQC TOUCH INTERFACE - ITEM 460.01	,
3	INSTALLATION	,
3.1	UNPACKING AND ASSEMBLY	,
3.2 3.2.1 3.2.2	CONNECTING THE POWER SOURCE)
3.2.3	Digital signals from power source to pantograph control	>
3.2.4	Analogue signals from power source to pantograph control	<u>,</u>
3.2.5	Emergency stop signal for power source	\$
3.3 3.3.1 3.3.2 3.3.3 3.3.4	CONNECTING THE GAS CONSOLE	- -
3.4 3.4.1	CONNECTING THE TORCH CP450G	,
35	APPLICATIONS TO BOBOT 66	5

3.6	COOLANT LIQUID REQUIREMENTS	6
4	USE	57
4.1	DESCRIPTION OF THE POWER SOURCES PANELS	57
4.2	DESCRIPTION OF MANUAL GAS CONSOLE PANEL AND ITS	67
4.2.1 4.2.2 4.2.3 4.2.4 4.2.4.1 4.2.4.2	Preparation and execution of the CUT Preparation and execution of MARK Performing the gas TEST Additional functions (SECOND FUNCTIONS) Preparation and execution of SPOT MARK Controlling the current in the work piece corne (CORNER)	70 70 71 71 71 71 rs
4.2.4.3	Management of torch cooling time at end of cut	it- 72
4.2.4.4	Display of coolant (H2O) flow rate and temperate	u-
4.2.4.5	Making the cut on perforated or gridded plate (SR)	′2 эs 73
4.2.4.6	6 Fine remote current adjustment (RRI)	73
4.3	DESCRIPTION OF MANUAL GAS CONSOLE DISPLAY PGC-D	
4.3.1 4.3.2 4.3.3 4.3.4	AND ITS USE	'3 73 75 75
4 4		(6 77
4.4	DESCRIPTION OF AUTOMATIC GAS CONSOLE PANEL	70
4.5	ERROR CODES	8
4.0)U 54
4.7)
5	APPENDIX	12
5.1	OPTIONAL KIT (ART. 425) FOR THE CONNECTION TO THE PANTOGRAPH'S CNC	32
5.2	Sound pressure level measurements	34

INSTRUCTION MANUAL FOR PLASMA CUTTING SYSTEM

IMPORTANT: BEFORE STARTING THE EQUIPMENT, READ THE CONTENTS OF THIS MANUAL, WHICH MUST BE STORED IN A PLACE FAMILIAR TO ALL USERS FOR THE ENTIRE OPERATIVE LIFE-SPAN OF THE MACHINE. THIS EQUIPMENT MUST BE USED SOLELY FOR WEL-DING OPERATIONS.

1 SAFETY PRECAUTIONS

WELDING AND ARC CUTTING CAN BE HARMFUL TO YOURSELF AND OTHERS. THE USER MUST THEREFORE BE EDUCATED AGAINST THE HAZARDS, SUMMARIZED BELOW, DERIVING FROM WELDING OPERATIONS. FOR MORE DETAILED INFORMATION, ORDER THE MANUAL CODE 3.300.758.

NOISE.

This machine does not directly produce noise exceeding 80dB. The plasma cutting/welding procedure may produce noise levels beyond said limit; users must therefore implement all precautions required by law.

MAGNETIC FIELDS - May be dangerous.

• Electric current following through any conductor causes localized Electric and Magnetic Fields (EMF). Welding/cutting current creates EMF fields around cables and power sources.

• The magnetic fields created by high currents may affect the operation of pacemakers. Wearers of vital electronic equipment (pacemakers) shall consult their physician before beginning any arc welding, cutting, gouging or spot welding operations.

• Exposure to EMF fields in welding/cutting may have other health effects which are now not known.

· All operators should use the followingprocedures in order to minimize exposure to EMF fields from the welding/ cutting circuit:

- Route the electrode and work cables together Secure them with tape when possible.
- Never coil the electrode/torch lead around your body.
- Do not place your body between the electrode/torch lead and work cables. If the electrode/torch lead cable is on your right side, the work cable should also be on your right side.
- Connect the work cable to the workpiece as close as possible to the area being welded/cut.
- Do not work next to welding/cutting power source.

EXPLOSIONS.

• Do not weld in the vicinity of containers under pressure, or in the presence of explosive dust, gases or fumes. • All cylinders and pressure regulators used in welding operations should be handled with care.

ELECTROMAGNETIC COMPATIBILITY

This machine is manufactured in compliance with the instructions contained in the standard IEC 60974-10 (CL. A), **and must be used solely for professional purposes in an industrial environment. There may be potential** difficulties in ensuring electromagnetic compatibility in non-industrial environments.

DISPOSAL OF ELECTRICAL AND ELECTRONIC EQUIPMENT

Do not dispose of electrical equipment together
 with normal waste!In observance of European Directive 2002/96/EC on Waste Electrical and Elec-

tronic Equipment and its implementation in accordance with national law, electrical equipment that has reached the end of its life must be collected separately and returned to an environmentally compatible recycling facility. As the owner of the equipment, you should get information on approved collection systems from our local representative. By applying this European Directive you will improve the environment and human health!

IN CASE OF MALFUNCTIONS, REQUEST ASSISTANCE FROM QUALIFIED PERSONNEL.

1.1 Warning label

The following numbered text corresponds to the label numbered boxes.

- 1. Cutting sparks can cause explosion or fire.
- 1.1 Keep flammable materials away from cutting.
- 1.2 Cutting sparks can cause fires. Have a fire extinguisher nearby, and have a watchperson ready to use it.

- 1.3 Do not cut on drums or any closed container.
- 2. The plasma arc can cause injury and burns.
- 2.1 Turn off power before disassembling torch.
- 2.2 Do not grip material near cutting path.
- 2.3 Wear complete body protection.
- 3. Electric shock from torch or wiring can kill.
- 3.1 Wear dry insulating gloves. Do not wear wet or damaged gloves.
- 3.2 Protect yourself from electric shock by insulating yourself from work and ground.
- 3.3 Disconnect input plug or power before working on machine.
- 4 Breathing cutting fumes can be hazardous to your health.
- 4.1 Keep your head out of fumes.
- 4.2 Use forced ventilation or local exhaust to remove fumes.
- 4.3 Use ventilating fan to remove fumes.
- 5 Arc rays may injure the eyes and burn the skin. Operators should therefore shield their eyes with lenses with a protection rating equal to or greater than DIN11 and adequately protect their face.
- 5.1 Wear hat and safety glasses. Use ear protection and button shirt collar. Use welding helmet with correct shade of filter. Wear complete body protection.
- 6 Become trained and read the instructions before working on the machine or cutting.
- 7 Do not remove or paint over (cover) the label.

2 <u>TECHNICAL SPECIFICATIONS</u>

2.1 General description of the system

The Plasma Prof 166 HQC (Art. 948) and the Plasma Prof 255 HQC (Art. 949) , complete with ignition unit HV19-1 (Art. 464) or HV-PVC (art.462) or HV19/PVC (art.459), manual gas console PGC-3 - PGC-2 (Art. 470), manual GAS console PGC-D (Art. 480), or automatic gas console APGC (Art.466), PVC valve console (Art. 469) and torch CP450G (articles depend on application), are mechanized multigas plasma cutting systems, fully controlled by a microprocessor, able to dispense a max current of 120 /250 A at 100% duty cycle.

All process parameters (material, gas, thickness and current) may be selected from the gas console; the optimum gas flow is automatically indicated based on the choices made.

The status of all operating parameters may be easily acquired, via personal computer, through a RS232 or USB port on the front panel of the power source; this allows a complete overview of the job situation and can help in the event of any malfunctions.

The machine software can then be updated using the same RS232, either a USB flashdrive.

For optimum cutting of any metal material, the system uses different gases, such as: air, nitrogen N2, oxygen O2, H35 blend (35% hydrogen H2 – 65% argon AR), F5 blend (5% hydrogen H2 – 95% nitrogen N2). Combinations of the latter are automatically suggested based on the material selected. it is then possible to perform the marking with gas argon Ar, also automatically suggested. Various sets of consumables are available based on the cutting current and gases used, calibrated and tested to obtain the maximum cutting quality.

Art. 1169....

2.2 Plasma Power Source

This is where the microprocessor resides and manages the entire system, and whose software may be updated from the RS232 port on the front panel.

In the back it includes the cooling unit, complete with tank, pump, radiator, filters, flow meter and thermometer.

2.2.1 Plasma Prof 166 HQC power source -Art.948

The Plasma Prof 166 HQC is a direct current power source, 120A max at 100% duty cycle, compliant with IEC standards 60974-1, 60974-2 and 60974-10.

TECHNICAL SPECIFICATIONS

Rated open circuit voltage (Uo)	300 V
Max output current (I2)	120 A
Output voltage (U2)	128 V
Duty cycle	100% @ 120A
Max ambient temperature	40 °C
Cooling	Air, with forced ventilation
Protection rating for the housing	IP21S
Net weight	205 kg
Rated supplyes voltage and max cur 220/230 V, 3 ~, 50/60 Hz, 52 A	rents:

380/400 V, 3 ~, 50/60 Hz, 30 A

415/440 V, 3 ~, 50/60 Hz, 28A

TORCH COOLING L	INIT
Rated cooling power at 1 I/min at 25°C	1.7 kW
Max pressure	0.45 MPa

5.2.1 Plasma Prof 255 HQC Power Source -Art.949

The Plasma Prof 255 HQC is a direct current power source, 250A max at 100% duty cycle, compliant with IEC standards 60974-1, 60974-2 and 60974-10.

TECHNICAL SPECIFICATIONS

Rated open circuit voltage (Uo)	315 V	
Max output current (I2)	250 A	
Output voltage (U2)	170 V	
Duty cycle	100% @ 250A	
Max ambient temperature	40 °C	
Cooling	Air, with forced ventilation	
Protection rating for the housing	IP21S	
Net weight	406 kg	
Rated supplyes voltage and max cu 220/230 V, 3 ~, 50/60 Hz, 145 A 380/400 V, 3 ~, 50/60 Hz, 76 A 415/440 V, 3 ~, 50/60 Hz, 70 A	rrents:	
TORCH COOLING	UNIT	
Rated cooling power at 1 l/min at 25°C	1.7 kW	
Max pressure	0.45 MPa	

2.3 Gas console

The gas console is a device to manage selection of the process parameters and adjust the gas flow, compliant with IEC 60974-8 regulations. It contains solenoid valves, pressure reducers and transducers as well as electronic boards to power and control these components.

2.3.1 Manual gas console PGC-3 - PGC-2 -Art.470

It is divided into two units: the PGC-3, powered by air, argon Ar, nitrogen N2 and oxygen O2, and the PGC-2, powered by the gases H35 (blend of 35% hydrogen H2 and 65% argon AR) and F5 (blend of 5% hydrogen H2 and 95% nitrogen N2).

289

46

98

USED PRESSURE Clean, dry and oil free according to ISO 8573-1: 2010 Air standard. Class

GAS

TECHNICAL SPECIFICATIONS

TITRE

0.8 MPa (8 bars) 220 l/min 1.4.2 (particulatewater-oil) 99.997% 0.8 MPa (8 bars) 70 l/min Argon Nitrogen 99.997% 0.8 MPa (8 bars) 150 l/min Oxygen 99.95% 0.8 MPa (8 bars) 90 l/min Mix: H35 35% hydrogen, 0.8 MPa (8 bars) 130 l/min 65% argon Mix: F5 5% hydrogen, 95% 0.8 MPa (8 bars) 30 l/min nitrogen

MAX. INLET

FI OW

RATE

* IISO 8573-1.2010 standard provides for Class 1.4.2:

• Particulate: < 20,000 solid particles per m3 air measuring between 0.1 and 0.5 µm; ≤ 400 solid particles per m3 air measuring betwe-

en 0.5 and $1.0 \mu m$; ≤ 10 solid particles per m3 air measuring betwe-

en 1.0 and 5.0 µm. • Water: Pressure dew point must be lower than or equal to 3°C.

• Oil: oil total concentration must be lower than or equal to 0.1 mg per m3 air.

Duty cycle	100%
Protection rating for the housing	IP 23
Net weight	20 kg

2.3.2 Automatic gas console APGC - Art.466

This is split into two units: one upper unit, supplied with air gas, argon Ar, nitrogen N2 and oxygen O2, and one lower unit supplied by gas H35 (mixture at 35% hydrogen H2 and 65% argon Ar) and F5 (mixture at 5% hydrogen H2 and 95% nitrogen N2).

289

98

0

116

G

TECHNICAL DATA

GASES USED	TITLE	MAX INLET PRESSURE	FLOW RATE
Air	Clean, dry and oil free as per ISO 8573-1: 2010 standard. Class 1.4.2 (particulate- water-oil)*	0.8 MPa (8 bar)	220 l/min
Argon	99.997%	0.8 MPa (8 bar)	70 l/min
Nitrogen	99.997%	0.8 MPa (8 bar)	150 l/min
Oxygen	99.95%	0.8 MPa (8 bar)	90 l/min
H35	Mixture: 35% hydrogen, 65% argon	0.8 MPa (8 bar)	130 l/min
F5	Mixture: 5% hydrogen, 95% azoto	0.8 MPa (8 bar)	30 l/min

* for the Class 1.4.2, the ISO 8573-1 2010 standard requires:

 Particulate: ≤ 20,000 solid particles per m3 of air with size between 0.1 and 0.5 μm; ≤ 400 solid particles per m3 of air with size between 0.5 and 1.0 μm; ≤ 10 solid particles per m3 of air with size between en 1.0 and 5.0 μm.

- Water: the air pressure dew point must be below or same as 3°C.
- Oil: the total oil concentration must be below or the same as 0.1 mg per m3 of air.

Duty cycle	100%
Protection rating for the housing	IP 23
Net weight	20 kg

Manual gas console PGC-3 - PGC-D- Art 2.3.3 480

The PGC-D unit is powered by air, argon Ar, nitrogen N2 and oxygen O2 at a maximum pressure of 0.8 MPa (8 bar).

0 0 289 98 344 USB PGC-D 304 ▲ 📖 CEBORA

TECHNICAL SPECIFICATIONS

GAS USED	TITRE	MAX. INLET PRESSURE	FLOW RATE
Air	Clean, dry and oil free according to ISO 8573-1: 2010 standard. Class 1.4.2 (particulate- water-oil)	0.8 MPa (8 bars)	220 l/min
Argon	99.997%	0.8 MPa (8 bars)	70 l/min
Nitrogen	99.997%	0.8 MPa (8 bars)	150 l/min
Oxygen	99.95%	0.8 MPa (8 bars)	90 l/min
H35	Mix: 35% hydrogen, 65% argon	0.8 MPa (8 bars)	130 l/min
F5	Mix: 5% hydrogen, 95% nitrogen	0.8 MPa (8 bars)	30 l/min

* IISO 8573-1.2010 standard provides for Class 1.4.2:
Particulate: ≤ 20,000 solid particles per m3 air measuring between 0.1 and 0.5 μm; ≤ 400 solid particles per m3 air measuring between 0.5 and $1.0 \mu m$; \leq 10 solid particles per m3 air measuring between 1.0 and 5.0 $\mu m.$

• Water: Pressure dew point must be lower than or equal to 3°C.

• Oil: oil total concentration must be lower than or equal to 0.1 mg per m3 air.

Duty cycle	100%
Protection rating for the housing	IP 23
Net weight	20 kg

2.4 Pvc valve console - Art 469

The PVC valve console is a device suitable for managing the exchange of gas in the ignition-transfer passages and switch-off.

It contains solenoid valves, check valves, pressure reducers.

The net weight of the PVC (Fig. 5) is 3.2 kg.

2.5 Ignition unit HV19-1- art 464

The HV19-1 ignition unit is a device that provides the high frequency-high voltage (14 kV) impulse needed to trigger the electric arc inside the torch, between electrode and nozzle.

It complies with IEC 60974-3 standard.

It can be mounted in any position and when the cover is opened, this causes the system to come to a standstill.

TECHNICAL DATA

Peak voltage (Upk)	14 kV
Duty cycle	100% @ 420A
Protection rating for the housing	IP 23
Net weight	6.5 kg

2.6 Ignition unit – HV19-PVC robot valve console - art 462

The ignition unit – valve console is a device which performs a double function:

- it provides the high frequency-high voltage (14 kV) impulse needed to trigger the electric arc inside the torch, between electrode and nozzle;

- it manages the exchange of gas in the ignition-transfer passages and switch-off. It contains solenoid valves, check valves, pressure reducers.

It complies with IEC 60974-3 standard.

It is generally used in robotized plants.

When the cover is opened, this causes the system to come to a standstill.

TECHNICAL DATA

Peak voltage (Upk)	14 kV
Duty cycle	100% @ 420A
Protection rating for the housing	IP 23
Net weight	10 kg

270

Fig. 7

2.7 Ignition unit – HV19-PVC CNC valve Console - art.459

The ignition unit - valve console is a device that performs a dual function:

- provides the high frequency-high voltage (14 kV) pulse, necessary to trigger the electric arc inside the torch between electrode and nozzle;

- manages the exchange of gases in the on-transfer and off phases.

Contains solenoid valves, non-return valves and pressure reducers. It is used in systems with pantograph, in combination with the relative torch.

Lid opening causes a shutdown of the plant system

TECHNICAL DATA

Peak voltage (Upk)	14 kV
Duty cycle	100% @ 420A
Protection rating for the housing	IP 23
Net weight	8,2 kg

Fig. 7/A

2.8 CP450G Torch - Art. 1223-1224-1225

The CP450G torch is a multi-gas appliance cooled by means of liquid coolant, suitable for bevel cutting and in compliance with the IEC 60974-7 standard.

It is suitable for the use of plasma gas such as: air, argon Ar, nitrogen N2, oxygen O2, mixture H35 (35% hydrogen H2 – 65% argon Ar) and mixture F5 (5% hydrogen H2 – 95% nitrogen N2); of secondary gases such as: air, argon Ar, nitrogen N2, oxygen O2; of auxiliary gases such as: air and nitrogen N2. Used with the Plasma Prof 420 HQC power source, max cutting current is 420A at 100% of duty cycle.

Various versions exist of the CP450G torch depending on the application: on pantograph or on robotized systems. The net weight of the torch complete with cable varies between 8 kg and 12 kg depending on the different lengths.

2.9 Water console - Art. 485

The WARTER CONSOLE is an accessory device designed to manage the water flow necessary for cutting Stainless Steel and Aluminum, if using the combination nitrogen N2 / water H2O.

Refer to the instruction manual of this accessory for the mode operation descriptions.

2.10 Gas console PGC-H2 - art.487

The water console PGC-H2 is an accessory device designed to manage the gas flow necessary for cutting high quality Stainless Steel and aluminum.

In particular is suitable for medium-high thicknesses cut. The combinations F5/N2 (5% hydrogen-5% nitrogen N2) and H35/ N2 (35% hydrogen H2 – 65% argon Ar) are used.

Refer to the instruction manual of this accessory for the mode operation descriptions.

2.11 HQC touch interface - item 460.01

The HQC Control Panel (Art. 460.01) allows the management of the automatic gas console of a Cebora plant of the HQC line, regardless of the type of interface (digital or analog) with the CNC / Robot. In particular, the configuration of the cutting parameters and the setting of the RUN status are carried out. All process parameters (material, gas, thickness and current) are selectable from the control panel and, based on their choice, the correct consumables are automatically indicated and the optimal gas flows set up.

Refer to the instruction manual of this accessory for a description of its operation.

N.B. if this interface is used with the automatic gas console art.466, set the dip switches DIP1 of the control circuit to the OFF-OFF position.

3 INSTALLATION

The system must be installed by qualified personnel. All the connections must comply with applicable standards and be made in full compliance with safety regulations (see CEI 26-23 / IEC-TS 62081).

Make sure the supply cable is disconnected during all the installation phases.

Carefully keep to the earth connection diagram shown on Appendix.

3.1 Unpacking and assembly

To move the power source, use a fork-lift truck.

To remove the wooden platform forming part of the packaging:

• loosen the 4 wooden platform retention screws

• lift the power source using a fork-lift truck and position the forks, bearing in mind the position of its centre of gravity (see Fig. 2).

3.2 Connecting the power source

All the connections must be made by qualified personnel.

Plasma Prof 166 HQC power source

• The power source is supplied with power voltage 400V three-phase. For different power voltages: remove the left side of the power source (see spare parts list), remove the cover of the terminal boards and proceed as indicated in figure 10a.

In case of 230V three-phase power supply, put in short circuit also the first terminal on the bottom on the left with the last one on the bottom on the right (see fig. 10a, 230V box) using the cable supplied (fixed, by means of a fastener, on the terminal board cables).

Plasma Prof 255 HQC power source

• The power source is supplied with power voltage 400V three-phase. For different power voltages: remove the right side of the power source (see spare parts list), remove the cover of the terminal boards and proceed as indicated in figure 10b.

NOTE: the 3-pole terminal board at the top relates to the service transformer.

In case of 230V three-phase power supply, put in short circuit also the first terminal on the bottom on the left with the last one on the bottom on the right (see fig. 10b, 230V box) using the cable supplied (fixed, by means of a fastener, on the cover).

Make sure the power voltage corresponds to that shown on the power source data plate.

The yellow-green lead of the power cable must be connected to an efficient earth system (see diagram of Appendix 5.2-Fig.27); the remaining leads must be connected to the power supply line by means of a switch, possibly near the cutting area to permit speedy switch-off in case of an emergency. The capacity of the thermal magnetic switch or fuses must be the same as the max appliance current input. This is shown on the data plate, on the rear of the machine, in correspondence to the **U**1 power voltage.

Any extensions must have a section suited for the max power input.

• After performing this operation, proceed to make the various connections (Fig. 11).

Fit the connection art. 1159, with relative cables, in torch coupling **G** of the power sourceand fully tighten the 3 retention screws. Tighten the black power cable to the terminal **B** (-), fit the two safety leads in the terminal board **C** and the red lead faston of the pilot arc in the relative lead **A** with male faston.

Tighten the end of the earth lead in the clamp **H** (+) as shown in figure 11. Also, connect the cooling water pipes **E** and **F**, being careful to make sure the colours correspond (**E**-red = hot water, return; **F**-blue = cold water, supply), to the respective connection pipes Art. 1156.

Fit the other end of the connection art. 1159 in the HV19-1 unit (art. 464) as indicated in the part section of figure 12 [black power lead to clamp **B** (-) and red cable faston to pilot arc in **A** (+)]:

The HV19-1 unit must be connected to the earth system directly on the pantograph (by means of the 4 retention screws shown in figure 6), in a position such as to permit its opening.

With reference to Fig.13, connect the connections art.1189 to the connectors **B** (relating to the gas console); the connection the pantograph to the connector **A**;

finally, any connection art.1199 to the connector **C** (relating to the remote control).

3.2.1 Connecting the CNC pantograph

In the case of a generator featuring Devicenet interface, refer to the specific documentation. NOTE: the male patch connector (AMP P/N 182926-1- Fig 14) with corresponding pins is provided for the CNC connector; the customer is responsible for the rest of the connection to the pantograph.

60

3.2.2 Digital signals from pantograph control to power source

WIRING OF A DIGITAL INPUT.

low logic level $0 \div +7,5$ Vdc;

high logic level $+14,5 \div +24$ Vdc;

input current 2,5 mA, max.;

input frequency 100 Hz, max.;

reference potential for each input (Gnd) J1, pin 2, on interface board.

ROBOT READY.

CONNECTOR TERMINALS CNC ON PO- WER SOURCE	SIGNAL NAME	SIGNAL TYPE	POSITION ON INTERFACE BOARD
1	Robot	Signal	J10, pin 3
2	Ready	+24 Vdc	J10, pin 4

"Robot Ready" signal is active in high position.

A +24Vdc voltage is required in order to have the Power source ready for cutting .

Pantograph Control must set this signal as soon as it is ready for cutting.

If the "Robot Ready" signal is absent the cutting process is immediately stopped and a flashing signal is displayed on the Control Panel.

NOTE: If the "Robot Ready" signal is not active no signal, either digital or analog, is obtained.

START.

CONNECTOR TERMINALS CNC ON PO- WER SOURCEE	SIGNAL NAME	SIGNAL TYPE	POSITION ON INTERFACE BOARD
3	Ctort	Signal	J10, pin 1
4	Start	+24 Vdc	J10, pin 2

I"Start" signal is active in high position and starts the cutting process. The cutting process is active as long as the "Start" signal is present.

Exceptions: "Robot Ready" signal is absent.

"Power Source Ready" signal is absent (ex.: over temperature, insufficient coolant level, etc.).

SPOT-MARK.

CONNECTOR TERMINALS CNC ON PO- WER SOURCE	SIGNAL NAME	SIGNAL TYPE	POSITION ON INTERFACE BOARD
5	Spot	Signal	J10, pin 7
6	Spot	+24 Vdc	J10, pin 8

The "Spot" signal is active at top.

Spot 0 Vdc= the Pantograph control signals normal cutting condition to the Power source.

Spot +24 Vdc= the Pantograph control commands the Power source to start "Spot Marking" mode.

CORNER

CNC CONNECTOR TERMINALS ON POWER SOURCE	SIGNAL NAME	SIGNAL TYPE	POSITION ON INTERFACE BOARD
15	Corpor	Signal	J10, pin 5
16	Corner	+24 Vdc	J10, pin 6

The "Corner" signal is active at top.

Corner 0 Vdc = the Pantograph control signals normal cutting condition to the Power source.

Corner +24 Vdc = the Pantograph control signals approach to a corner to the Power source.

PREFLOW

CNC CONNECTOR TERMINALS ON POWER SOURCE	SIGNAL NAME	SIGNAL TYPE	POSITION ON INTERFACE BOARD
17	Droflow	Signal	J11, pin 5
18	Pretiow	+24 Vdc	J11, pin 6

The "Preflow" signal is active at top.

- Preflow 0 Vdc = the Pantograph control signals NOT to start "Preflow" function to Power source.
- Preflow +24 Vdc = the Pantograph control commands Power source to start "Preflow" function.

CUT/MARK

CNC CONNECTOR	SIGNAI	SIGNAL	POSITION ON
TERMINALS ON	NAME		INTERFACE
POWER SOURCE	NAME		BOARD
19	Cut/	Signal	J11, pin 7
20	Mark	+24 Vdc	J11, pin 8

Il segnale "Cut/Mark" è attivo alto.

Cut/Mark 0 Vdc = il Controllo Pantografo segnala al Generatore la condizione di taglio normale.

The "Cut/Mark" signal is active at top.

- Cut/Mark 0 Vdc = the Pantograph control signals normal cutting condition to the Power source.
- Cut/Mark +24 Vdc = the Pantograph control signals to the Power source to start "Cut/ Mark" mode.

3.2.3 Digital signals from power source to pantograph control

WIRING A RELAY DIGITAL OUTLET

contact voltage contact current switchover frequency 24 Vdc / 120 Vac; 1 Adc / 0.5 Aac max; 15 Hz max.

ARC TRANSFER

CNC CONNECTOR TERMINALS ON POWER SOURCE	SIGNAL NAME	SIGNAL TYPE	POSITION ON INTERFACE BOARD
12	Arc	Contact NO	J4, pin 1
14	Transfer	Terminal C	J4, pin 3

The "Arc Transfer" signal is active at top (contact closed). The "Arc Transfer" signal remains active for the duration of cutting, including break-through phase.

POWER SOURCE READY

			POSITION
	SIGNAL	SIGNAL	ON
	NAME	TYPE	INTERFACE
POWER SOURCE			BOARD
25	Power	Terminal C	J3, pin 5
26	Source ready	Contact NO	J3, pin 6

The "Power Source Ready" signal is active at top (contact closed).

The "Power Source Ready" signal remains active for the time the Power source is ready to cut. As soon as an error message appears on the Power source or the "Robot Ready" signal is deactivated from the Pantograph control, the "Power Source Ready" signal ceases being active. This means that the "Power Source Ready" signal can detect both Power source errors and Pantograph errors.

PROCESS ACTIVE

CNC CONNECTOR TERMINALS ON POWER SOURCE	SIGNAL NAME	SIGNAL TYPE	POSITION ON INTERFACE BOARD
27	Process	Terminal C	J3, pin 3
286	Active	Contact NO	J3, pin 4

The "Process Active" signal is active at top (contact closed).

When the Pantograph control initializes the digital "Start" signal, the cutting process starts with gas preflow, followed by the cutting operation and subsequently by gas postflow.

From the start of gas preflow until the end of gas postflow, the Power source initializes the "Process Active" signal. The Power source is performing the process.

3.2.4 Analogue signals from power source to pantograph control.

WIRING AN INSULATED VOLTAGE ANALOGUE OUTPUT.

output voltage output current output frequency 0 ÷ 10 Vdc; 20 mA max; 5 Hz max.

NOTE: Both the sections 1 and 2 of DIP1 must always be in identical positions (e.g.: both ON or both OFF).

V Arc-ISO

CNC CONNECTOR TERMINALS ON POWER SOURCE	SIGNAL NAME	SIGNAL TYPE	POSITION ON INTERFACE BOARD
11	V_Arc-ISO	analog out+	J5, pin 3
7	(0÷5V) (0÷10V)	analog out-	J5, pin 4

"V Arc-ISO" is the signal relating to the arc voltage at Power source output ("electrode-piece being worked" voltage), provided in insulated and reduced way.

The "V_Arc-ISO" signal is available with the following fullscale values:

• voltage from 0 to 5V, corresponding to the arc voltage from 0 to 250V (reduction ratio = 1/50);

• voltage from 0 to 10V, corresponding to arc voltage from 0 to 250V (reduction ratio = 1/25).

The full scale value depends on the position of the dip-switches Dip1 on the interface board (see fig. 15).

The machine is supplied with the insulated reduced arc voltage output at 1/50 Varc.

WIRING OF A NON-INSULATED VOLTAGE ANALOGUE OUTPUT.

10 Kohm, approx.

V Arc-NO-ISO

CNC CONNECTOR TERMINALS ON POWER SOURCE	SIGNAL NAME	SIGNAL TYPE	POSITION ON TORCH CIRCUIT + MEASURE- MENT
9	V_Arc-NO-ISO	analog out+	J8, pin 1
8	(0÷250V)	analog out-	J8, pin 2

"V_Arc-NO-ISO" is the signal relating to the arc voltage at Power source output ("electrode-piece being worked" voltage), provided in a direct and NON insulated way.

The "V_Arc-NO-ISO" signal is available with voltage values 0 ÷ 250 Vdc and with positive terminal (potential of piece being worked) electrically connected to the earth potential of the system.

The "electrode" potential is provided with a 10 Kohm resistor, fitted in series at output.

Emergency stop signal for power source 3.2.5

WIRING THE EMERGENCY INPUT.

Input voltage 24 Vdc; Current input 20 mA max

EMERGENCY A

CNC CONNECTOR TERMINALS ON POWER SOURCE	SIGNAL NAME	SIGNAL TYPE	POSITION INSIDE POWER SOURCE
21	Emergency	Contact NC	Line TL control
22	A	Contact NC	Line TL control

"Emergency A" is the emergency stop signal sent to the Power source by the Pantograph control or system protection devices. It is triggered by a relay contact or safety device; when the device trips, the contact is opened and the Power source comes to an immediate halt, with the opening of the line contact inside the Power source. The Power source is thus without power supply to the power circuits. The "Emergency A" signal is active low (contact open): to have the Power source ready to start cutting, the contact must be closed. "Emergency A" immediately stops the power supply from the Power source. The message "OFF rob" appears on the control panel.

EMERGENCY B.

CNC CONNECTOR TERMINALS ON POWER SOURCE	SIGNAL NAME	SIGNAL TYPE	POSITION INSIDE POWER SOURCE
23	Emergency	Contact NC	Line TL control
24	В	Contact NC	Line TL control

"Emergency B" is the emergency stop signal sent to the Power source by the Pantograph control or system protection devices. It is triggered by a relay contact or safety device; when the device trips, the contact is opened and the Power source comes to an immediate halt, with the opening of the line contact inside the Power source. The Power source is thus without power supply to the power circuits. The "Emergency B" signal is active low (contact open): to have the Power source ready to start cutting, the contact must be closed. "Emergency B" immediately stops the power supply from the Power source. The message "OFF rob" appears on the control panel.

NOTE: a multipolar connector with additional signals is available as an optional kit (see appendix).

3.3 Connecting the gas console

3.3.1 Manual gas console PGC-3 and PGC-2

• Fasten the gas console above the power source or above the pantograph and connect the earth leads to an efficient earth system as indicated in the Fig. 26 of Appendix 5.3.

The two units PGC-3 and PGC-2 are connected together by means of:

- the connection between CN06 and CN07

- the pipe between the "plasma cutflow" outlet of PGC-3 and the "plasma" inlet of PGC-2 (see Fig. 16)

• Connect the pipe bundle art.1166 by tightening the pipes to the relative gas outlets, being careful to ensure the markings correspond (plasma preflow, secondary preflow/cutflow and auxiliary in PGC-3; plasma cutflow in PGC-2); screw the electric connector to the outlet CN05 (see the left part of Fig. 16).

• Connect the other end of art.1166 to the PVC valve console (art.469) for the "plasma", to "secondary" and "auxiliary" pipes, being careful to make sure the markings correspond. Fasten the PVC to the pantograph head, near the torch (see the right part of Fig. 16).

• Finally connect the connection art.1189 by screwing the electric connector onto the CN04 outlet (see the left part of Fig. 17).

3.3.2 Manual gas console PGC-D

• Fasten the gas console above the power source or above the pantograph and connect the earth leads to an efficient earth system as indicated in the Fig. 24 of Appendix 5.2. Connect the pipe bundle art.1166 by tightening the pipes to the relative gas outlets, being careful to ensure the markings correspond (plasma preflow, secondary preflow/cutflow and auxiliary

• screw the electric connector to the "GAS CONSOLE" outlet (see left part of Fig. 16)

- Connect the other end of art.1166 to the PVC valve console (art.469) for the "plasma", to "secondary" and "auxiliary" pipes, being careful to make sure the markings correspond. Fasten the PVC to the pantograph head, near the torch (see the right part of Fig. 16)

• finally connect the connection art.1189 by screwing the electric connector onto the "POWER SOURCE" outlet (see the left part of Fig. 17).

3.3.3 Automatic gas console APGC

• Fasten the gas console above the power source or above the pantograph and connect the earth leads to an efficient earth system as indicated in the diagram of Fig. 24 in Appendix 5.3.

• Connect the pipe bundle art.1166 by tightening the pipes to the relative gas outlets, being careful to ensure the markings correspond (plasma preflow, secondary pre-flow/cutflow and auxiliary; screw the electric connector to the outlet CN05 (see Fig. 17).

• Connect the other end of art.1166 to the PVC valve console (art.469) for the "plasma", to "secondary" and "auxiliary" pipes, being careful to make sure the gas pipe markings correspond. Fasten the PVC to the pantograph head, near the torch (see the right part of Fig. 16).

• Finally connect the connection art.1189 by screwing the electric connector onto the CN04 outlet (see Fig. 17).

Make sure the air (AIR) is always connected, at adequate pressure, to the automatic gas console, as this is used as "service" gas.

3.3.4 Note on gas connection

The gas inlet threads are 1/4G for air gas, Ar, N2, O2 and auxiliary and 1/8G for H35 and F5 gas respectively.

The customer is responsible for the supply of gases, and for the programmed/preventive maintenance of the distribution system. Remember that lack of system maintenance could be the cause of serious accidents.

Carefully read the "Safety Sheet" relating to each of the gases used, so as not to underestimate hazards caused by incorrect use.

NOTE: The choice of the type of pipe depends on the gas used (see EN 559 standard).

NOTE: The use of gas of inferior purity could result in a reduction in speed, quality and maximum thickness of the cut. Furthermore, the life-span of expendable materials cannot be guaranteed.

IMPORTANT: when oxygen gas is used, everything that comes into contact with it must be free of oils and grease. • when the MS - O2/O2 cutting program is selected (mild steel with oxygen/oxygen gas), make sure the air is connected to the gas console inlet, as this is used as "pre-flow" gas.

• when a cutting current is selected higher than 50A, make sure the air or nitrogen (N2) are also connected to the gas inlet of the manual or automatic gas console in the AUXILIARY channel.

3.4 Connecting the torch CP450G

3.4.1 Applications on pantograph

• Connect the pipe bundle exiting from the torch to the PVC valve console (art.469) tightening these to the respective gas outlets and following the order indicated by their markings (see Fig. 18).

• Using a T-square, make sure the torch is perpendicular to the pantograph cutting surface.

• Insert a torch cable (art.1224, 1225) in the HV19-1 Unit (art. 464) as shown in the right part of figure 19.

3.5 Applications to robot

• Connect the pipe bundle exiting from the torch to the switch-on unit - HV19-PVC valve console (art.462) tightening these to the respective gas outlets and following the order indicated by the markings on same.

• Using a T-square, make sure the torch is perpendicular to the pantograph cutting surface.

• Insert a torch cable (art.1222 or 1223) in the switch-on unit - HV19-PVC valve console (art. 462) and proceed in the same manner as described in the previous paragraph.

3.6 Coolant liquid requirements

The cooling unit is supplied with a minimum quantity of coolant liquid: the customer is responsible for filling the tank before using the system.

Use only CEBORA coolant (art. 1514) and carefully read the MSDS for its safe use and correct storage.

The inlet of the 10-litre tank is in the upper part of the cooling unit, as shown in fig.20.

Fill to max level and, after first starting the system, top up to offset the volume of liquid in the pipes.

NOTE: during system use and especially when replacing the torch or expendable materials, small liquid leaks occur. Top up weekly up to max level.

NOTE: after 6 months, the coolant must be completely changed, whatever the operating hours of the system.

4 <u>USE</u>

4.1 <u>Description of the power sources panels</u>

The entire system can be turned on from the power source panel using the knob **A**. The lamp **B** on signals such operation.

A = Mains power switch.

B = Mains power lamp.

C = RS232 serial input port.

D = fuse protecting the cooling circuit pump (5A-250V-T).

E = Fairlead for power supply cable.

- F = CNC connector for pantograph connection.
- G = CN03 connector for Gas Console connection
- H = Coolant tank cap.
- I = Coolant level indicator.

- L= Coolant outlet filter.
- M= Coolant tank bleeder valve.
- N= Coolant delivery pipe quick-fitting.
- O= Coolant return pipe quick-fitting.
- P = Welding torch coupling
- Q = Fairlead for earth cable.
- R= Coolant return filter.
- S = Connector for remote panel connection.
- T = USB socket for updating the power source firmware.

4.2 <u>Description of manual gas console panel</u> and its use

All system functions can be controlled from the gas console panel. In particular, the type of job to be performed is selected, i.e., CUT, MARK, or gas TEST.

A: Work mode selection button.

Every time this button is pressed, the corresponding LED comes on: B: Cutting mode LED. 🔲 CUT

MARK C: Mark mode LED.

E: Button for selecting the parameters to be regulated.

Every time this button is pressed, the corresponding LED comes on:

- **F**: Led indicating the selection mode of the type of material to be cut.
- **GAS** G: Led indicating the selection mode of the PLASMA/SECONDARY gas combination.
- **H**: Led indicating the selection mode of the thickness of the material to be cut.
- I: Led indicating the selection mode of A 📃 the cutting current.

m/min L: Led indicating the different mode of

M: Led indicating the different consuma-🔲 ចោ bles set to be used relating to previous selections. 888 N: Display showing parameters being

adjusted.

O: Parameter adjustment knob.

P: Display showing type of cutting plasma gas. 888

the cutting speed.

Q: Display showing type of secondary cutting 888 gas. SECONDAR

- R: Display showing pressure of plasma gas during cutting.
- PREFLOW S: Display showing pressure of plasma gas being ignited.
- T: Display showing pressure of secondary gas 88 being ignited.
 - U: Display showing pressure of secondary gas Я during cutting.

(SELECTION pressing button E)	DESCRIPTION	SELECTION (turning knob O)
	MAT	type of material to be cut	MS = Mild Steel SS = Stainless Steel AL = Aluminium
•			
	GAS	gas combination (PLASMA/SECONDARY) Suitable for chosen material	AIR/AIR - O2/AIR O2/O2 - N2/N2 F5/N2 - H35/N2
▼			
	mm	Thickness of material to be cut	See cut tables
▼			
		Cut current suggested for the chosen (MAT/GAS/mm) combination	See cut tables
▼			
	m/min	Cut speed suggested for the chosen (MAT/GAS/mm/A) combination	See cut tables
•			
	I U	Consumables set to be used for the chosen (MAT/GAS/mm/A) combination	 STD (Standard) SPD (Speed) EXP QPC See cut tables

Tab. 1

SELECTION (pressing button V)	DESCRIPTION		REGULATION (turning knob Y)
SET	Switch on of display R PLASMA CUTFLOW	CUTFLOW	Until simultaneous switch-on of the two arrow LEDs X
▼			
SET	Switch on of displayy S PLASMA PREFLOW	PREFLOW	Until simultaneous switch-on of the two arrow LEDs X
SET	Switch on of display T SECONDARY PREFLOW	CUTFLOW	Until simultaneous switch-on of the two arrow LEDs X
SET	Switch on of display U SECONDARY CUTFLOW	PREFLOW 8.8.	Until simultaneous switch-on of the two arrow LEDs X

V: Button for selecting PRE/CUT FLOW and secondary PRE/CUT FLOW plasma gas channels.

W: Button for confirming parameter settings: console ready for CUT, MARK or TEST.

- **X**: Correct gas pressure search help LED: -low pressure = left LED on.
 - high pressure = right LED on.
 - correct pressure = both LEDs on.
 - correct pressure = both LEDs

Y: Knobs for regulating the pressure of the gases of the PGC-3 console.

- **Z**: Led indicating start of PGC-2 console.
- K:
- **K**: Knob for regulating the pressure of the gases of the PGC-2 console.

4.2.1 Preparation and execution of the CUT

After starting the system by means of the switch on the front power source panel, the lighting up of the CUT LED **B** (see Fig. 21) indicates that the machine is in "cut" mode. First of all, a series of selections/adjustments must be made and a check must be carried out to ensure the RUN key is not pressed (PREFLOW and CUTFLOW display screen in Fig.21 of PLASMA and SECONDARY gas flow off).

The first thing to do, in sequence, is the selection indicated on table 1.

By keeping the current selection button pressed (LED I on), end mode is selected as indicated by the flashing LED. The current can now be regulated, with 1A step, in preset intervals [20-30 A], [40-50 A], [70-90A], [110-120A], [180-200 A], [230-250 A].

The second thing to do, in sequence, is the regulation indicated on table 2.

When the SET key is pressed, the gas flow for each channel is active for 10 s: after which, the key must be pressed again to continue regulation.

By pressing the SET button again after the last adjustment, the regulation mode is exited. If the button is pressed again, return is made to the first regulation, and so on.

The arrow LEDs under the display screen of the corresponding channel indicate the direction of adjustment of the knob: if the left one is lit, flow must be increased (clockwise), vice versa for the right one (anticlockwise). Once the correct flow is achieved, depending on the selection made on Tab. 1, both are switched on.

After exiting from regulation mode, after the above adjustments, press the RUN button: all the display screens will thus light up relating to the PLASMA and SECONDARY channels, and the power source will be ready for cutting. If the H35 or F5 gas has been selected, the LED comes on of the PGC-2 gas console.

NOTE: when the system is switched on, the last work setting remains stored (i.e. MAT-GAS-mm-A). If, in the next adjustment, the type of gas is changed, then "purge" is automatically performed, i.e., first of all pipe emptying, followed by subsequent cleaning with flow active for about 10 s.

After the start signal from the pantograph, the following sequence is automatically started:

- Preflow lasting 0.5 s with selected gas.
- High voltage / High frequency Pulse.
- Pilot arc switch-on.
- Transfer of plasma arc (sending of "arc transfer" signal to CNC).
- Start of CNC movement on x-y plane at end of "pierce delay time".

When the stop signal is received from the pantograph, the following sequence automatically starts:

- Switch-off of plasma arc.
- End of CNC movement on x-y plane.
- Postflow with selected gas.

4.2.2 Preparation and execution of MARK

After starting the system by means of the switch on the front power source panel, the lighting up of the MARK LED indicates that the machine is in "mark" mode. First of all, a series of selections/adjustments must be made and a check must be carried out to ensure the RUN key is not pressed (PREFLOW and CUTFLOW display screen in Fig.21 of PLASMA and SECONDARY gas flow off).

The first thing to do, in sequence, is the selection indicated on table 3.

For the second setting, refer to that of Tab. 2 with relative notes.

SEL (pr bu	ECTION essing tton E)	DESCRIPTION	SELECTION (turning knob O)
	MAT	type of material to be marked	MS = Mild Steel SS = Stainless Steel AL = Aluminium
	GAS	Combination of (PLASMA/SECON- DARY) gas suita- ble for the chosen material	Ar/Ar
	A	Cutting current suggested for the chosen (MAT/GAS/ mm) combinationa	See cut tables

Tab. 3

4.2.3 Performing the gas TEST

After starting the system by means of the switch on the front power source panel, the lighting up of the TEST LED indicates that the machine is in "test" mode. The seal test must be periodically performed, from T01 to T05, to check for any gas leaks in the pipes, from where they enter the rear of the gas console as far as entry into the valve console. The TF6 flow test also permits checking the flow in the auxiliary AUX channel.

Each channel can be checked individually, as shown on Tab. 4:

SELECTION (turning knob O)	DESCRIPTION
T 01	Air / air channel test
•	
<u>507</u>	N2 / N2 channel test
TOJ	O2 / O2 channel test
TOY	H35 / channel test
T 05	Ar / Ar channel test
TF8	AUX channel test
RLL	Complete test (timed au- tomatic sequence of T01, T02, T03, T04, T05, T06)

Tab. 4

When the RUN key is pressed, the selected test is started: the machine first of all performs a "purge", then the pipes are filled with gas and the GAS INLET solenoids are subsequently deactivated along with those in the valve console.

If no leaks are found during the test, e.g., with AIR/AIR, the display screen of the gas console shows the AIR OK message (same goes for the other gases: N2 OK, O2 OK, H35 OK and Ar OK).

If the test T04 has been selected, during the TEST, the LED of the PGC-2 gas console lights up.

4.2.4 Additional functions (SECOND FUNC-TIONS)

In the following descriptions, we shall refer to Fig.21. With system on and in inactive mode (no RUN: display **R,S,T,U** off), enter the "second functions" menu by pressing the keys **A** and **E** at the same time.

4.2.4.1 Preparation and execution of SPOT MARK

The spot mark is a special type of mark in which the trace consists of a spot, rather than a line or any other normal type of mark (see MARK work mode, para.4.2.2).

After setting a number of gas console parameters, the spot mark can be controlled and performed directly by the CNC, maintaining the same cut parameters and the same expendables.

Regulate the sport mark parameters indicated below, selectable in succession by pressing button **E**:

After the above regulations, by means of a digital signal on the relative pins (see Fig.14), switch is made from cut mode to spot mark mode (CUT/SPOT MARK).

SEL (pr	ECTION essing	DESCRIPTION	SELECTION (turning knob O)
	SEN	Spot Enable (enables/disa- bles spot mark function)	OFF = disabled ON = enabled
▼			
	SI	Spot Current (spot mark current)	From 10 to 39 A
▼			
	ST	Spot Time (spot mark time)	OFF* From 0.01 to 1.00 s
 Tab. 5			

*in this case, the duration of the spot is controlled by means of the pantograph Start/Stop signal. If, on the other hand, the time is set, then this value represents the max duration of the spot from the transferred arc signal.

4.2.4.2 Controlling the current in the work piece corners (CORNER)

Reducing the current in the corners of the work piece is a useful function when associated with cutting speed reduction in same. This way, excessive removal of metal in the corner is eliminated. After setting a number of parameters from the gas console, the Corner function can be managed and performed directly from the CNC, maintaining the same cutting parameters and the same expendables. Regulate the corner parameters mentioned below, selectable in succession by pressing button **E**.

SELECTION (pressing button E)		DESCRIPTION	SELECTION (turning knob O)		
	CEN	Corner Enable (enables/disables the corner function)	OFF = disabled ON = enabled		
	CI	Corner Current (percentage of corner current with respect to cutting current)	From 50 to 100 *		
▼					
	CSD	Corner Slope Down (current ramp down gradient)	From 1 to 100 A/ (s/100)		
	CSU	Corner Slope Up (current ramp up gradient)	From 1 to 100 A/ (s/100)		

Tab. 6

* The regulation of the corner current depends on the position of the switch #2 of the bench DIP3 in the remote board (see Fig.15).

With the switch #2 in OFF position (predefined configuration), the value of the corner current is regulated directly from the pantograph through the relative analogue input (0-10V) (see optional kit art.425) according to the ratio described on table 7.

ANALOGUE INPUT	CORNER CURRENT	IMPLEMENTED VALUE
OV	50%	1/2 of cutting current
5V	75%	³ ⁄ ₄ of cutting current
10V	100%	same as cutting current

Tab. 7

In the event of such analogue input (0-10V) being disconnected, the corner current value remains fixed at 50% (default) of the cutting current.

With the switch #2 in ON position, the analogue input described above is ignored by the power source and the operator can regulate the value of the corner current directly from the gas console panel by means of the knob **O**. The following illustration shows signal timing:

4.2.4.3 Management of torch cooling time at end of cutting

At the end of each cut of the piece being worked, the flow of secondary gas starts again to cool the torch. The duration of this flow depends on the cutting current and increases along with the current itself.

Sometimes, for specific jobs, it may be a good idea to reduce such duration.

The operator can adjust the Post-Flow (PoF) time directly from the gas console panel by means of the knob \mathbf{O} . In particular, the max duration of such time can be adjusted, depending on the set cutting current, by up to 5 seconds at the most.

SELECTION (pressing button E)		DESCRIPTION	SELECTION (turning knob O)
	PoF	Post Flow (duration of torch cooling flow at end of cut)	From 5 to T s (T=max duration in seconds, depending on cutting current)

4.2.4.4 Display of coolant (H2O) flow rate and temperature

In this mode, the flow rate of the coolant/temperature can be displayed on screen N/Q, in litres/min/C°. This is normally 3 litres/min.
4.2.4.5 Making the cut on perforated or gridded plates (SR)

To cut perforated or gridded plates, it is often best to use the Self Restart function. With such function started, the power source restarts the arc every time this is interrupted. The pantograph must also be prepared for cuts of this type.

SE (r b	LECTION pressing utton E)	DESCRIPTION	SELECTION (turning knob O)	
	SR	Self Restart (enables/disa- bles self restart function)	OFF = disabled ON = enabled	

4.2.4.6 Fine remote current adjustment (RRI)

This function, available in the "second functions" menu of the gas console, requires the optional kit art.425.

Make reference to the instruction manual of the latter for a complete description.

4.3 <u>Description of manual gas console display</u> <u>PGC-D and its use</u>

All the system functions are managed from the displays of the PGC-D gas console. In particular, is possible to configure the cutting parameters and the RUN status is set. All process parameters (material, gas, thickness and current) can be selected from the display and, based on their choice, the correct consumables and indications of the optimal gas flows are automatically indicated. For an optimal cut of each metal material, the system uses different types of gas, such as: air, nitrogen N2, oxygen O2; in addition, mixture H35 (35% hydrogen H2 - 65% argon Ar) and mixture F5 (5% hydrogen H2 - 95% nitrogen N2) with the optional unit PGC-H2 art.487; in addition, H2O water in the secondary channel with the WSC optional unit art.485. The combinations of the different gases are proposed automatically according to the material selected. It is then possible to perform the marking, presented automatically with Argon Ar gas.

From the PGC-D display, the following are performed:

- selection and setting of the parameters relating to the work to be carried out: spot marking (SPOT), cutting (CUT) and marking (MARK);

- activation of the generator when performing the cut: $\ensuremath{\mathsf{RUN}}$ key;

- display information on the system configuration and its status.

The main screen of the PGC-D gas console display is presented as a set of 6 upper tabs (Menu, Cutting tables, SPOT, CUT, MARK, RUN), 4 left side (CNC/Robot Parameters, Power Source Status, Power Source Settings, System Informations)

and 3 lower, described below.

4.3.1 System setup

CNC / Robot parameters

The figure below shows the cutting parameters relating to the Material, Gas, Thickness, Current setting. These parameters are also found in the cutting tables included in the torch box.

		SPOT		MARK	RUN	
(ft)						
	Arc Voltage			148 V		
	Cutting Spee	ed		2200	mm/min	
	Cutting Heig	ht		3.5	mm	
	Ignition Heig	jht		6.0	mm	
(~) 🌡	Pierce Heigh	nt		6.0	mm	
	Pierce Delay			0.6	s	
	Kerf Width			2.6 mm		
日日南	Edge Start		NO			
T I I I	Marking Vol	tage		75	V	
	Marking Spe	ed		1500	mm/min	
	Marking Hei	ght		2.0	mm	

System status

The figure below shows various system information regarding its composition and some significant parameters in real time

		SPOT	MARK	RUN
Ł.	Arc Voltage Arc Current	e Status	0.0	V A
	Coolant Flow Coolant Ten Aux Press Power Source	nperature ce Model	3.1 25.0 5 Art.949	°C
6 - 6 - 6	Firmware Ve Cutting Char Torch Mode	er ersion rts I ength	007 6.0 CP455G	m
i	Plasma Valv Water Secor External Inte	re Console ndary Console erface	Art.469 OFF Analog	

In the first five items you can see:

- Arc voltage = voltage between the electrode and the piece to be cut / marked;

- Arc Current = cutting / marking current;
- Coolant flow = coolant flow rate;
- Coolant temperature = coolant temperature;
- Aux press = air pressure at the gas console inlet.
- In the second nine items you can see:

- Article, serial number and firmware version of the power source;

- Version number of the cutting tables
- Torch model and system gas cable length;
- Model of plasma valve unit;

- Enabling / disabling the Water Secondary Console art.485 (optional);

- The settings of the interface to the CNC / Robot.

Power Source setup

The figure below shows additional parameters for advanced functions. These functions are described in the following paragraphs

		SPOT		M	ARK	RUN		
(FPI)	Power Source Settings							
	Corner Curre	ent Regulation			Enabled			
	Corner Curre	ent			100	%		
0	Corner Slop	e Down		10.0	A/ms			
	Corner Slop	1.0	A/ms					
	Self Restart			Disabled	ł			
i			Τe	est	<u> </u>	Advanced Settings		

Fig.4

Current management in the corners of the workpiece (Corner)

The reduction of the current in the corners of the workpiece is a useful feature when associated with the reduction of the cutting speed in the same. This eliminates the excessive removal of metal in the corner. It is possible to enable or disable the Corner function directly from the CNC / Robot, keeping the same cutting parameters and the same consumables. The parameters of the Corner function (see Fig. 4) are adjusted using the keys:

- Corner current = percentage of the corner current with respect to the cutting current [50-100%];

- Corner Slope Down = slope of the current descent ramp in the range [0.1-10.0 A/ms];

- Corner Slope Up = slope of the current rise ramp in the range [0.1-10.0 A/ms].

The adjustment of the Corner current is subordinated to a flag which discriminates whether the parameter is managed directly by the CNC or from the display (see instruction manual relating to digital protocols for plasma HQC, code 3.300.056). The timing of the signals for the Corner function is shown below:

CORNER timing figure

Performing cutting on perforated or gridded sheets (Self Restart)

To cut perforated or grilled sheets, it is often useful to enable the "Self Restart" function. With this function activated (Self Restart = Enabled), the power source restarts the arc every time it stops. It is also necessary to prepare the CNC for cuts of this type.

In this screen there are also the TEST and Advanced Setting keys.

By pressing the TEST key you enter the relevant tab where you can perform the gas leakage test. After selecting the type of gas in the Test box, pressing the Start button starts the relative test: the sysytem first performs a "purge", then the pipes are filled with gas and then the INLET GAS solenoid valves and those present in the valve console are deactivated. If no leaks are detected during the test time, the check marks under each channel turn green. Conversely, in the event of leaks from one or more channels, a red cross appears under the corresponding channel.

The leak test must be performed periodically, on all gas types, to check for any leaks in the pipes, from the inlet of them in the rear panel of the gas console to the inlet of the valve console.

By pressing the Advanced Setting button, you enter the relevant tab where you can set different system components, such as the type of torch and the length of the pipes.

4.3.2 Preparation and execution of the cut (CUT)

After turning on the system via the switch on the front panel of the power source, after a few seconds the tab in Fig.1 appears. Conversely, if there is a communication problem with the power source, "Waiting... ... "appears on the screen

The first preparation to be carried out, in sequence, is the selection shown in Fig. 2 (Cutting Charts tab).

Fig.2

Choose the type of material by pressing the key under the wording Material: the related permitted gas combinations are thus proposed. After selecting the gas, by pressing the key under the word Gas, the thickness and the cutting current must be chosen. The system automatically shows the set of consumables suitable for these settings and relating to the type of torch in use (in the example, the CP455G torch).

The second setting to be made, in sequence, is the selection shown in figure 3 (CUT tab). The current type of machining is set by the CNC "runtime": if it is in cut mode then the word CUT appears in red instead of white. Given that the system automatically prepares itself with the indication of the flows and the current indicated in the cutting tables (see instruction manual code 3.301.097), it is possible to modify these parameters within certain intervals.

Fig.3

The flows can be adjusted for each channel by touching the numeric area of the channel itself and thereby activating the flow of gas. Then, using the knob of the corresponding pressure reducer, it is rotated until the cursor is brought to the central area. By pressing the numerical area again, the gas flow is interrupted.

The numeric value of each channel indicates the actual pressure of the flow leaving the torch.

If the set pressure value is outside the recommended range, the bar below the numeric value turns red; vice versa, the bar becomes green.

It is possible to adjust the cutting current by pressing the "+" and "-" keys located next to the relative numerical value. In particular, it is adjusted in steps of 1 A.

Once the setting of the values described above is complete, the RUN key must be pressed to activate the power source when cutting is performed. Thus, the RUN key changes from white to yellow and finally to green (see Fig.4 and Fig.5).

Fig.5

P.S. when the system is switched on, the last working setting remains stored (e.g. Material-Gas-Thickness-Current). If in the following adjustment the type of gas is changed and the RUN key is pressed again, then it first changes to yellow during the automatic execution of the purge (i.e. an emptying of the pipes).

When the system is ready, the RUN key changes from yellow to green.

4.3.3 Preparation and execution of the spot marking (SPOT)

The spot marking is a particular type of marking where the trace consists of a point, unlike a line or any drawing typical of normal marking (see below, MARK working mode). It is possible to enable or disable the spot marking directly from the CNC/Robot, through the relative signal, keeping the same cutting parameters and the same consumables. The SPOT parameters (see Fig. 6) are adjusted by acting:

- on the Current button by entering a value in the range 10 ÷ 39 A;

- on the Spot Time button by entering a value in the range 0.01 \div 1.00 s.

Fig.6

4.3.4 Preparation and execution of the marking (MARK)

After turning on the system via the switch on the front panel of the power source, after a few seconds the tab in Fig.1 appears. Conversely, if there is a communication problem with the generator, appears on the screen "Waiting"

The selection shown in Fig. 2 (Cutting Charts tab) is the same as in the CUT mode (see instruction manual code 3.301.097).

The preparation to be made is the selection shown in figure 7 (MARK tab).

The current type of working is set by the CNC "runtime": if it is in cutting mode then the word MARK appears in red instead of white. Given that the system automatically prepares itself with the indication of the flows and the current indicated in the cutting charts (see instruction manual code 3.301.097), it is possible to vary these parameters within certain intervals.

Fig.7

The flows can be adjusted for each channel by touching the numeric area of the channel itself and thereby activating the flow of gas. Then, using the knob of the corresponding pressure reducer, it is rotated until the cursor is brought to the central area. By pressing the numerical area again, the gas flow is interrupted.

The numeric value of each channel indicates the actual pressure of the flow leaving the torch.

If the set pressure value is outside the recommended range, the bar below the numeric value turns red; vice versa, the bar becomes green.

It is possible to adjust the marking current by pressing the "+" and "-" keys located next to the relative numerical value. In particular, it is adjusted in steps of 1 A.

Once the setting of the values described above has been completed, the RUN key must be pressed to activate the power source when the marking is performed. Thus, the RUN key changes from white to yellow and finally to green.

4.4 <u>Description of automatic Gas Console</u> panel

The front panel of the automatic gas console features a multifunction LED defining its status. In particular:

Phase	LED colour	Description
	Off	No power to internal
Power source switch-on	Red steady	Problems with micro- processor of internal electronic board
	Red/Green alternated	Waiting for commu- nication with power source
Fully operating	Red/Green alternated slow	No communication with power source
r diry operating	Green steady	Regular operation

A=multifunction LED

To manage the automatic gas console (configuration of the cutting parameters and setting the RUN status) the remote panel art. 460 must be connected. Make reference to the instruction manual of this article for a description of operation.

With the CAN digital interface open between the pantograph/robot and the power source, and in the absence of art. art.460, a specific application will be required on the control.

4.5 Error codes

ERROR DESCRIPTION	CODE	POSSIBLE SOLUTION
Error during USB firmware updating	USB (Err. 85)	Contact the Cebora assistance service
Start pressed at switch-on or power source reset (switch to RUN mode)	TRG (Err. 53)	Switch off the power source, remove the start command and restart the power source.
Cooling liquid over-temperature	H20 T (Err. 93)	Check for any blockages in the cooling circuit or torch pipes. Check the integrity of the pump fuse. Clean the radiator.
Module overtemperature: IGBT 1 / IGBT 2	TH1 (Err. 74) TH2 (Err. 77) TH3 (Err. 72) TH4 (Err. 71)	Do not switch off the power source. This way the fan will continue to operate for quick cooling. Return to normal operation is automatic when the temperature returns to within normal limits. If the problem continues, contact the CEBORA assistance service.
Flow below minimum limit of cooling liquid	H2O (Err 75)	Check for any blockages in the cooling circuit or torch pipes. Check the integrity of the pump fuse. Clean the radiator.
Low pressure in a gas supply channel	GAS LO (Err. 78)	Increase the pressure of the corresponding gas by means of the knob on the front panel of the gas console. Also check the gas supply pressure. This must be around 8 bar.
Door open in power source or in ignition mo- dule HV19-1 or HV19-PVC	OPN (Err. 80)	Make sure the cover of the power source and/or of the HV19-1 or HV19-PVC unit is correctly closed.
CNC off, in emergency or not corrected to the power source	rob (Err. 90)	Switch on the CNC, exit the emergency, check the power source-CNC connection.
Power tranformer over-temperature	TH0 (Err. 73)	Do not switch off the power source. This way the fan will continue to operate for quick cooling. Return to normal operation is automatic when the temperature returns to within normal limits. If the problem continues, contact the CEBORA assistance service.
Internal error in the microprocessor memory	Err 2	Contact the CEBORA assistance service.
The power source does not communicate with the gas console	Err 6	Check the connection between the power source and the gas console. If the problem continues, contact the CEBO-RA assistance service.
The power source does not communicate with the interface circuit	Err 7	Contact the CEBORA assistance service.
The gas console does not communicate with the power source	Err 9	Check the connection between power source and gas console. If the problem continues, contact the CEBORA assistance service.
Direct current below minimum acceptable	Err 16	Contact the CEBORA assistance service
Problem with internal clock	Err 26	Contact the CEBORA assistance service.
Writing error in power source flash memory	Err 27	Contact the CEBORA assistance service.
Current detected with arc off on IGBT1 mo- dule	Err 30	Contact the CEBORA assistance service.
Current over range measurement on IGBT1 module during cutting	Err 35	Contact the CEBORA assistance service.

ERROR DESCRIPTION	CODE	POSSIBLE SOLUTION
Current detected on pilot arc circuit with arc off	Err 39	Contact the CEBORA assistance service.
Hazardous power voltage: power circuit fault	Err 40	Contact the CEBORA assistance service.
Current detected in pilot arc circuit during cutting	Err 49	Contact the CEBORA assistance service.
Electrode spent	Err 55	Replace the electrode and/or nozzle. Make sure the con- sumables are correctly fitted depending on the type of job. Also check the correctness of the cutting gas.
Alignment error between the firmware ver- sions of: power source, gas console, CNC in- terface module; or, error during power source auto-upgrade phase	Err 58	Contact the CEBORA assistance service.
Mains voltage outside specifications	Err 67	Check the fuse of the switchboard to which the power source mains wire is connected. If the problem continues, contact the CEBORA assistance service.
Gas pipe emptying not completed or pressu- re high in a gas supply channel	Err 79	Check the consumables parts or reduce the supply pres- sure.
Gas console not connected to power source	Err 81	Contact the CEBORA assistance service.
No connection between the gas console PGC-3 and PGC-2 or APGC-1 and APGC-2	Err 82	Check the connection between the PGC-3 module or APGC-1 module (top one) and the PGC-2 module or APGC-2 module (bottom one)
Detected current, with arc off, on IGBT2 module	Err 31	Contact the CEBORA assistance service.
Current over range measurement on IGBT2 module during cutting	Err 36	Contact the CEBORA assistance service.

4.6 Cut quality

Many are the parameters and their combinations which affect cut quality: the Cut Table manual shows the perfect adjustments for cutting a specific material. Nevertheless, because of the inevitable difference caused by installation on different pantographs and variations in the characteristics of the cut materials, the most perfect parameters can undergo small variations with respect to those indicated on the above tables. The following points can help the user to make those small alterations needed to obtain a good-quality cut.

As is shown on the cutting tables, there are various sets of expendable parts depending on the cutting current and gas used.

If high output requirements prevail, and therefore the need for high cutting speeds, set the maximum allowed current and the nozzle with the largest diameter. If on the other hand, focus is on cutting quality (greater squaring and narrower kerf) set the minimum current allowed for the material and the thickness being worked.

Before making any adjustment, make sure:

The torch is perpendicular to the cutting surface.

The electrode, nozzle, H2O nozzle carrier and nozzle protection are not too worn and that their combination corresponds to the chosen job.

The cutting direction, depending on the figure to be obtained, is correct. Remember that the best side of a cut is always the right side with respect to the direction of movement of the torch (the plasma diffuser used has the holes in clockwise direction).

If large thicknesses have to be cut, special attention must be given during the break-through phase: in particular, try and remove any build-up of melted material around the hole where cutting starts to avoid double arc phenomena when the torch passes over the starting point again. Also always keep the nozzle protection clean of any melted metal slag.

Table 7 indicates some of the most frequent problems and relative solutions.

PROBLEM	CAUSE	SOLUTION	
	Electrode or nozzle worn	Replace both	
Bevel cut	Stand off too high	Lower stand off	
	Cutting speed too high	Regulate speed	
	Cutting speed too high	Regulate speed	
	Nozzle diameter too large with re- spect to set current	Check Cutting Tables	
Not enough penetration	Work piece thickness excessive with respect to set current	Increase the cutting current	
	Earth lead not in good electric con- tact with cutting surface	Check the tightness of the earth terminal to CNC	
	Cutting speed too low	Regulate speed	
Presence of "low-speed dross" *	Cutting current too high	Reduce cutting current	
	Stand off too low	Raise stand off	
	Cutting speed too high	Regulate speed	
Presence of "high-speed dross" **	Cutting speed too low	Increase cutting speed	
5 - 1	Stand off too high	Lower stand off	
Pounded outting edge	Cutting speed too high	Regulate speed	
	Stand off too high	Lower stand off	

* The low speed dross is thick dross, of globular shape, easy to remove. The kerf is fairly large.

** The high speed dross is thin dross, hard to remove. In case of very high speed, the cut wall is rather rough.

4.7 System maintenance

A correct system maintenance ensures top performance and extends the life of all the components, including consumables parts. We therefore suggest performing the following maintenance jobs.

Period	Maintenance operations				
Daily	Make sure the gas supply is at the right pressure				
	Make sure the power source, cooling unit and gas console fans are working correctly				
Weekly	Check coolant level				
	Clean the torch threads and make sure there are no signs of corrosion or electric discharges				
Monthly	Check the gas, water and electric connections for any cracks, abrasions or leaks				
	Run the TEST program through the gas console.				
	Change the coolant in the system				
Every six months	Clean the external and tank filters of the cooling unit				
	Clean the gas console filter				
	Replace the torch O-rings, and order the kit art.1400				

If, during an inspection, a highly worn component part is found or one that is not working properly, contact the CEB-ORA assistance service.

To service the inner parts of the different system components, request the assistance of qualified personnel. In particular, the following operations are best performed periodically.

For all the component parts:

- Clean the inside with compressed air (clean, dry and oil free) to eliminate any dust build up. If possible use a vacuum cleaner;
- Make sure the power connections are tight and are not overheating.

For each component part:

Component	Maintenance operations			
Power source	Clean the radiators of the IGBT modules with compressed air, directing the jet of air on them .			
Cooling unit	Clean the radiator with compressed air, directing the air jet towards it			
Cooling unit	Check the internal hydraulic circuit for cracks or leaks.			
Gas console	Check the internal pneumatic circuit for cracks or leaks.			
Valve console	Check the internal pneumatic circuit for leaks.			
lonition unit	Make sure the spark-gap is not excessively blackened and that the gap distance is correct;			
Ignition unit	Check the inner hydraulic circuit for cracks or leaks.			

Also periodically check the system earth connection. In particular, following the diagram in fig.24, make sure all leads are perfectly tight between screw and nut.

5 <u>APPENDIX</u>

5.1 Optional kit (Art. 425) for the connection to the pantograph's CNC

To assemble the kit Art.425, please refer to the relevant specific instructions.

GROUNDING SCHEMATIC OF THE CUTTING PLANT (FIG. 24)

Use ground cables with cross-section equal or higher than 16 mm2.

Art. 1159....

5.2 Sound pressure level measurements

Plasma cutting generates noise levels that can damage the human ear; therefore, operators must wear adequate protective equipment, such as a headset or earplugs, in conformity to national or local regulations.

The measurements shown in the following table, referring to mild steel and taken at the specified distances, can help the safety supervisor adopt all of the means required to make the workplace safe (for example, see international standard IEC 60974-9).

Material	Cutting gas	Thickness	Cutting current	Cutting speed	Measurement distance (opposite source x above source)	A-weighted sound pressure level	Peak C- weighted sound pressure level
		(mm)	(A)	(m/min)	(m x m)	(dB)	(dB)
Mild Steel	O2/air	25	120	0.4	1 x 0.5	105.0	119.7
Mild Steel	O2/air	25	120	0.4	2 x 0.5	100.5	114.6
Mild Steel	O2/air	25	120	0.4	3 x 0.5	99.2	113.3
	00/1	10					105.0
Mild Steel	O2/air	40	250	0.5	1 x 0.5	111.9	125.0
Mild Steel	O2/air	40	250	0.5	2 x 0.5	108.1	121.6
Mild Steel	O2/air	40	250	0.5	3 x 0.5	106.5	120.3
	0.01						
Mild Steel	02/air	50	400	0.8	1 x 0.5	114.2	129.5
Mild Steel	O2/air	50	400	0.8	2 x 0.5	108.9	124.1
Mild Steel	O2/air	50	400	0.8	3 x 0.5	107.1	122.9

The measurements lasted 1 minute each and were conducted in a closed, reverberant room at CEBORA S.p.A. laboratories.

The data do not consider any corrections due to background noise or to the dimensions of the test room.

A-weighted and peak-C sound pressure levels are defined by international standards (see IEC 11202 and IEC 61672-1).

Schemi elettrici e Parti di ricambio Electrical schematics and Spare parts Schaltplan und Ersatzteile Schémas électrique et Pièces détachées Esquemas eléctricos y Partes de repuesto Esquema eléctricos e Partes sobressalentes Sähkökaavio ja Varaosat

QUESTA PARTE È DESTINATA ESCLUSIVAMENTE AL PERSONALE QUALIFICATO. THIS PART IS INTENDED SOLELY FOR QUALIFIED PERSONNEL. DIESER TEIL IST AUSSCHLIESSLICH FÜR DAS FACHPERSONAL BESTIMMT. CETTE PARTIE EST DESTINEE EXCLUSIVEMENT AU PERSONNEL QUALIFIE. ESTA PARTE ESTÁ DESTINADA EXCLUSIVAMENTE AL PERSONAL CUALIFICADO. ESTA PARTE È DEDICADA EXCLUSIVAMENTE AO PESSOAL QUALIFICADO. TÄMÄ OSA ON TARKOITETTU AINOASTAAN AMMATTITAITOISELLE HENKILÖKUNNALLE. DETTE AFSNIT HENVENDER SIG UDELUKKENDE TIL KVALIFICERET PERSONALE. DIT DEEL IS UITSLUITEND BESTEMD VOOR BEVOEGD PERSONEEL. DENNA DEL ÄR ENDAST AVSEDD FÖR KVALIFICERAD PERSONAL. AUTOV TO TMHMV A PROORIZV ETAI APOKLEISTIKAV GIA TO EIDIKEUMENV O PROSWPIKO

Art. 469

 $\overline{\mathcal{T}}$

COD	IFICA COLORI _AGGIO ELETTRICO	WIRING DIAGRAM COLOUR CODE
А	NERO	BLACK
В	ROSSO	RED
С	GRIGIO	GREY
D	BIANCO	WHITE
Е	VERDE	GREEN
F	VIOLA	PURPLE
G	GIALLO	YELLOW
Н	BLU	BLUE
K	MARRONE	BROWN
J	ARANCIO	ORANGE
I	ROSA	PINK

CODIFICA COLORI CABLAGGIO ELETTRICO		WIRING DIAGRAM COLOUR CODE
L	NROSA-NERO	PINK-BLACK
М	GRIGIO-VIOLA	GREY-PURPLE
N	BIANCO-VIOLA	WHITE-PURPLE
0	BIANCO-NERO	WHITE-BLACK
Р	GRIGIO-BLU	GREY-BLUE
Q	BIANCO-ROSSO	WHITE-RED
R	GRIGIO-ROSSO	GREY-RED
S	BIANCO-BLU	WHITE-BLUE
Т	NERO-BLU	BLACK-BLUE
U	GIALLO-VERDE	YELLOW-GREEN
V	AZZURRO	BLUE

95

La richiesta di pezzi di ricambio deve indicare sempre: numero di articolo, matricola e data di acquisto della macchina, posizione e quantità del ricambio. When ordering spare parts please always state the machine item and serial number and its purchase data, the spare part position and the quantity.

POS	DESCRIZIONE	DESCRIPTION
01	PANNELLO LATERALE SINISTRO	LEFT SIDE PANEL
02	TELERUTTORE	CONTACTOR
03	CIRCUITO PRECARICA	PRECHARGE CIRCUIT
04	CONNESSIONE	CONNECTION
05	MORSETTIERA	TERMINAL BOARD
06	COPERCHIO	COVER
07	PANNELLO POSTERIORE	BACK PANEL
08	CONNESSIONE GAS CONSOLE	GAS CONSOLE CONNECTION
09	CIRCUITO SERIALE RS232/422	RS232/422 SERIAL CIRCUIT
10	PRESSACAVO	STRAIN RELIEF
11	CAVO RETE	POWER CORD
12	CONNESSIONE CNC	CNC CONNECTION
13	SUPPORTO CONNETTORI	CONNECTORS SUPPORT
14	FILTRO AUTOPULENTE	SELF CLEANING FILTER
15	RACCORDO TUBO ACQUA	WATER HOSE FITTING
16	PANNELLO LATERALE DESTRO	RIGHT SIDE PANEL
17	MOTORE + POMPA	MOTORPUMP
18	SUPPORTO MOTORE	MOTOR SUPPORT
19	RADIATORE	RADIATOR
20	SUPPORTO MACCHINA	MACHINE SUPPORT
21	PANNELLO POSTERIORE INTERNO	REAR INSIDE PANEL
22	TUNNEL	TUNNEL
23	MOTOVENTOLA	FAN
24	SUPPORTO INDUTTANZA	INDUCTOR SUPPORT
25	RESISTENZA	RESISTOR
26	INDUTTANZA	INDUCTOR
27	SUPPORTO TRASFORMATORE	TRANSFORMER SUPPORT
28	TRASFORMATORE DI POTENZA	POWER TRANSFORMER
29	FONDO	воттом
30	PANNELLO ANTERIORE	FRONT PANEL
31	PANNELLO COMANDI	CONTROL PANEL
32	PORTALAMPADA	LAMP HOLDER
33	LAMPADA	LAMP
34	PROTEZIONE COMMUTATORE	SWITCH PROTECTION
35	INTERRUTTORE	SWITCH

POS	DESCRIZIONE	DESCRIPTION
36	TRASFORMATORE DI SERVIZIO	AUXILIARY TRANSFORMER
37	PULSANTE SICUREZZA	SECURITY SWITCH
38	SUPPORTO MICRO INTERRUTTORE	SWITCH SUPPORT
39	CIRCUITO ALIMENTATORE	POWER SUPPLY CIRCUIT
40	GRUPPO CIRCUITO CONTROLLO	CONTROL CIRCUIT UNIT
41	PIANO INTERMEDIO	INSIDE BAFFLE
42	SUPPORTO CIRCUITO INTERFACCIA	INTERFACE CIRCUIT SUPPORT
43	CIRCUITO INTERFACCIA ANALOGICO	ANALOGIC INTERFACE CIRCUIT
44	PIANO INTERMEDIO	INSIDE BAFFLE
45	SERBATOIO	TANK
46	TAPPO SERBATOIO	TANK CAP
47	GRUPPO FLUSSIMETRO	FLOWMETER UNIT
48	SUPPORTO FLUSSIMETRO	FLOWMETER SUPPORT
49	PANNELLO CHIUSURA LATERALE	CLOSING SIDE PANEL
50	CIRCUITO FILTRO H.F.	HV FILTER CIRCUIT
51	SUPPORTO ISOLANTE	INSULATING SUPPORT
52	SUPPORTO MORSETTIERA	TERMINAL BOARD SUPPORT
53	PORTAFUSIBILE	FUSE HOLDER
54	CONDENSATORE	CAPACITOR
55	SUPPORTO	SUPPORT
56	PROTEZIONE SCHEDA	CIRCUIT PROTECTION
57	CIRCUITO TORCIA + MISURA	TORCH + MEASURE CIRCUIT
58	CIRCUITO DI MISURA	MEASURE CIRCUIT
59	PIANO INTERMEDIO	INSIDE BAFFLE
60	GRUPPO IGBT	IGBT UNIT
61	CIRCUITO R.C.	R.C. CIRCUIT
62	RINFORZO PIANO LATERALE	REINFORCEMENT SIDE PANEL
63	MORSETTIERA	TERMINAL BOARD
64	GRUPPO FILTRO DI LINEA	FILTER UNIT
65	CONNESSIONE USB	USB CONNECTION
66	CONNESSIONE PANNELLO REMOTO	REMOTE PANEL CONNECTION
67	RESISTENZA	RESISTOR
68	GRUPPO TERMOMETRO	THERMOMETER UNIT

POS	DESCRIZIONE	DESCRIPTION
01	PANNELLO LATERALE	
01	SINISTRO	
02	PANNELLO CHIUSURA	CLOSING SIDE PANEL
00		
03		
04		
00		
06	CONDENSATORI	CIRCUIT
07	CIRCUITO ALIMENTATORE	POWER SUPPLY CIRCUIT
08	TRASDUTTORE	TRANSDUCER
09	PULSANTE SICUREZZA	SECURITY SWITCH
10	PIANO INTERMEDIO VERTICALE	VERTICAL INSIDE BAFFLE
44	TRASFORMATORE DI	AUXILIARY
11	SERVIZIO	TRANSFORMER
13	SUPPORTO	SUPPORT
14	CIRCUITO PRECARICA	PRECHARGE CIRCUIT
15	PIANO INTERMEDIO	INSIDE BAFFLE
16	CIRCUITO MISURA RETE	MEASURE CIRCUIT
17	MORSETTIERA	TERMINAL BOARD
10	SUPPORTO	TERMINAL BOARD
10	MORSETTIERA	SUPPORT
20	TUNNEL GRUPPO DI POTENZA	POWER UNIT TUNNEL
21	CONVOGLIATORE ARIA	AIR CONVEYOR
22	TRASFORMATORE DI	POWER TRANSFORMER
00		
23		
2 4 25		
20		
20		ROTTOM
21		
20		
20		
31		SWITCH
32		
33	RESISTENZA	RESISTOR
00	SUPPORTO	
34	MORSETTIERA	SUPPORT
25	CIRCUITO TORCIA +	TORCH + MEASURE
55	MISURA	CIRCUIT
36	PROTEZIONE SCHEDA	CIRCUIT PROTECTION
37	CIRCUITO INTERFACCIA	ANALOGIC INTERFACE
	ANALOGICO	CIRCUIT
38	SUPPORTO CIRCUITO	INTERFACE CIRCUIT
39	SUPPORTO ISOLANTE	INSULATING SUPPORT
40	MORSETTIERA	IERMINAL BOARD

POS	DESCRIZIONE	DESCRIPTION
41	SUPPORTO SERBATOIO	TANK SUPPORT
42	GRUPPO FLUSSIMETRO	FLOWMETER UNIT
13	RINFORZO PIANO	REINFORCEMENT INSIDE
40	INTERMEDIO	BAFFLE
44	RADIATORE	RADIATOR
45	SUPPORTO RADIATORE	RADIATOR SUPPORT
46	MOTOVENTOLA	FAN
47	SUPPORTO PER MOTOPOMPA	MOTORPUMP SUPPORT
48	MOTORE + POMPA	MOTORPUMP
49	PIANO INTERMEDIO VERTICALE	VERTICAL INSIDE BAFFLE
50	SERBATOIO	TANK
51	TAPPO SERBATOIO	TANK CAP
52	CIRCUITO SERIALE RS232/422	RS232/422 SERIAL CIRCUIT
53	CONNESSIONE GAS	GAS CONSOLE
55	CONSOLE	CONNECTION
54	PORTAFUSIBILE	FUSE HOLDER
55	CONNESSIONE CNC	CNC CONNECTION
56	SUPPORTO CONNETTORI	CONNECTORS SUPPORT
57	PRESSACAVO	STRAIN RELIEF
58	SUPPORTO MOTOVENTOLA	FAN SUPPORT
59	PROTEZIONE MOTOVENTOLA	FAN PROTECTION
60	PIASTRA CHIUSURA SERBATOIO	CLOSING TANK PLATE
61	PROTEZIONE MOTOVENTOLA	FAN PROTECTION
62	GRUPPO CIRCUITO CONTROLLO	CONTROL CIRCUIT UNIT
63	MOTOVENTOLA	MOTOR WITH FAN
64	TUNNEL+ SUPPORTO	TUNNEL + SUPPORT
65	SUPPORTO MORSETTIERA	TERMINAL BOARD SUPPORT
66	FILTRO AUTOPULENTE	SELF CLEANING FILTER
67	PANNELLO POSTERIORE	BACK PANEL
68	RACCORDO TUBO ACQUA	WATER HOSE FITTING
69	PANNELLO LATERALE DESTRO	RIGHT SIDE PANEL
70	SUPPORTO INDUTTANZA	INDUCTOR SUPPORT
71	FILTRO RETE	MAINS FILTER
72	TELERUTTORE	CONTACTOR
73	CIRCUITO FILTRO H.F.	HV FILTER CIRCUIT
74	GRUPPO FILTRO DI LINEA	FILTER UNIT
76	CONNESSIONE PANNELLO	REMOTE PANEL
/0	REMOTO	CONNECTION
77	CONNESSIONE USB	USB CONNECTION
78	GRUPPO TERMOMETRO	THERMOMETER UNIT

La richiesta di pezzi di ricambio deve indicare sempre: numero di articolo, matricola e data di acquisto della macchina, posizione e quantità del ricambio. When ordering spare parts please always state the machine item and serial number and its purchase data, the spare part position and the quantity.

POS	DESCRIZIONE	DESCRIPTION
01	FASCIONE	HOUSING
03	DISTANZIALE	SPACER
04	SUPPORTO SCHEDA	CIRCUIT SUPPORT
05	CIRCUITO DI CONTROLLO	CONTROL CIRCUIT
06	CERNIERA	HINGE
07	CIRCUITO CONNETTORE	CONNECTOR CIRCUIT
08	ELETTROVALVOLA	SOLENOID VALVE
09	RACCORDO	FITTING
10	RACCORDO PRESE MUL- TIPLE	FITTING
11	RACCORDO PRESE MUL- TIPLE	FITTING
12	RACCORDO PRESE MUL- TIPLE	FITTING
13	PIANO INTERMEDIO	INSIDE BAFFLE
14	RACCORDO PRESE MUL- TIPLE	FITTING
15	RACCORDO	FITTING
16	RACCORDO	FITTING
17	CONNESSIONE TRASDUT- TORE	TRANSDUCERS CONNEC- TOR
18	CONNESSIONE CON CON- NETTORE	CONNECTOR

POS	DESCRIZIONE	DESCRIPTION
19	MOTOVENTOLA	MOTOR WITH FAN
20	FONDO + PANNELLO	UNDERCARRIAGE
21	GRUPPO FILTRO ARIA	AIR FILTER UNIT
22	LATERALE DX	RIGHT SIDE PANEL
23	CONNESSIONE CON CON- NETTORE	CONNECTOR
24	GRUPPO RIDUTTORE PRESSIONE	GEAR PRESSURE GROUP
25	PANNELLO ANTERIORE	FRONT PANEL
26	CIRCUITO PANNELLO LCD	LCD PANEL CIRCUIT
30	PIEDE IN GOMMA	RUBBER FOOT
34	SUPPORTO	SUPPORT
36	CIRCUITO SENSORE PRESSIONE	PRESSURE SENSOR CIRCUIT
37	LATERALE SX	LEFT SIDE PANEL
38	BLOCCAGGIO	LOCKING DEVICE
45	PROTEZIONE CONNES- SIONE	CONNECTION PROTEC- TION
67	CONNESSIONE USB	USB CONNECTION

La richiesta di pezzi di ricambio deve indicare sempre: numero di articolo, matricola e data di acquisto della macchina, posizione e quantità del ricambio. When ordering spare parts please always state the machine item and serial number and its purchase data, the spare part position and the quantity.

POS	DESCRIZIONE	DESCRIPTION
01	FASCIONE	HOUSING
02	MORSETTIERA	TERMINAL BOARD
03	SUPPORTO MORSETTIE- RA	TERMINAL BOARD SUP- PORT
04	ATTACCO CAVI	CORDS CONNECTOR
05	PULSANTE	SWITCH
06	ISOLAMENTO	INSULATION
07	CIRCUITO HF	HF CIRCUIT
08	SUPPORTO ATTACCO TORCIA	THORCH SUPPORT
10	TRASFORMATORE H.F	H.F. TRANSFORMER
11	BLOCCAGGIO	LOCKING DEVICE
12	FONDO + PANNELLO	UNDERCARRIAGE
13	CIRCUITO FILTRO HF (T)	FILTER CIRCUIT

POS	DESCRIZIONE	DESCRIPTION
14	CONNESSIONE	CONNECTION
15	FONDO GRUPPO VALVOLE	SOLENOID VALVES SUP- PORT
16	GRUPPO PLASMA PRE- CUTFLOW	PRE-CUTFLOW PLASMA UNIT
17	GRUPPO SECONDARIO PRE-CUTFLOW	PRE-CUTFLOW SECONDA- RY UNIT
18	GRUPPO AUSILIARIO PRE-CUTFLOW	PRE-CUTFLOW AUXILIA- RY UNIT
19	GRUPPO RIDUTTORE DI PRESSIONE	PRESSURE REGULATOR UNIT
23	COPERCHIO	COVER
24	PROTEZIONE GRUPPO PLASMA	PLASMA UNIT PROTEC- TION
28	PASSACAVO	CABLE OUTLET

La richiesta di pezzi di ricambio deve indicare sempre: numero di articolo, matricola e data di acquisto della macchina, posizione e quantità del ricambio. When ordering spare parts please always state the machine item and serial number and its purchase data, the spare part position and the quantity.

103

POS	DESCRIZIONE	DESCRIPTION
01	FASCIONE	HOUSING
02	GRUPPO REGOLATORE DI PRESSIONE	PRESSURE REGULATOR UNIT
03	SUPPORTO REGOLATORE	ADJUSTING SUPPORT
04	SUPPORTO CIRCUITO	CIRCUIT BOARD SUPPORT
05	CIRCUITO DI CONTROLLO	CONTROL CIRCUIT
06	CERNIERA	HINGE
07	CIRCUITO CONNETTORE	CONNECTOR BOARD
08	ELETTROVALVOLA	SOLENOID VALVE
09	RACCORDO	FITTING
10	RACCORDO PRESE MULTIPLE	FITTING
11	RACCORDO CON PRESE	FITTING
12	RACCORDO PRESE MULTIPLE	FITTING
13	PIANO INTERMEDIO	INSIDE BAFFLE
14	RACCORDO CON PRESE	FITTING
15	RACCORDO	FITTING
16	RACCORDO	FITTING
17	CONNESSIONE TRASDUTTORE	TRANSDUCERS CONNECTOR
18	CONNESSIONE CON CONNETTORE	CONNECTOR

POS	DESCRIZIONE	DESCRIPTION
19	MOTOVENTOLA	MOTOR-FAN
20	FONDO+ PANNELLO POSTERIORE	BOTTOM+BACK PANEL
21	GRUPPO FILTRO ARIA	AIR FILTER UNIT
23	SUPPORTO RIDUTTORI	REGULATORS SUPPORT
24	GRUPPO RIDUTTORE DI PRESSIONE	PRESSURE REGULATOR UNIT
25	PANNELLO ANTERIORE	FRONT PANEL
26	FASCIONE	HOUSING
27	FONDO + PANNELLO POSTERIORE	BOTTOM+BACK PANEL
28	PANNELLO ANTERIORE	FRONT PANEL
29	RACCORDO	FITTING
30	PIEDE IN GOMMA	RUBBER FOOT
31	GRUPPO RIDUTTORE	PRESSURE REDUCER UNIT
32	RACCORDO CON PRESE	FITTING
33	SUPPORTO VALVOLE	VALVES SUPPORT
34	CONNESSIONE CON CONNETTORE	CONNECTOR
35	RACCORDO	FITTING
36	CIRCUITO SENSORE PRESSIONE	PRESSURE SENSOR CIRCUIT

La richiesta di pezzi di ricambio deve indicare sempre: numero di articolo, matricola e data di acquisto della macchina, posizione e quantità del ricambio. When ordering spare parts please always state the machine item and serial number and its purchase data, the spare part position and the quantity.

POS	DESCRIZIONE	DESCRIPTION
01	FASCIONE	HOUSING
02	GRUPPO AUSILIARIO PRE-CUTFLOW	PRE-CUTFLOW AUXILIA- RY UNIT
03	GRUPPO RIDUTTORE PRESSIONE AUSILIARIO	AUXILIARY PRESSURE REGULATOR UNIT
04	GRUPPO SECONDARIO PRE-CUTFLOW	PRE-CUTFLOW SECONDA- RY UNIT

POS	DESCRIZIONE	DESCRIPTION
05	GRUPPO PLASMA PRE- CUTFLOW	PRE-CUTFLOW PLASMA UNIT
06	FONDO	воттом
07	CONNESSIONE CON CON- NETTORE	CONNECTOR

La richiesta di pezzi di ricambio deve indicare sempre: numero di articolo, matricola e data di acquisto della macchina, posizione e quantità del ricambio. When ordering spare parts please always state the machine item and serial number and its purchase data, the spare part position and the quantity.

POS	DESCRIZIONE	DESCRIPTION
01	FASCIONE	HOUSING
02	MORSETTIERA	TERMINAL BOARD
03	SUPPORTO MORSETTIERA	TERMINAL BOARD SUPPORT
04	ATTACCO CAVI	CORDS CONNECTOR
05	PULSANTE	SWITCH
06	ISOLAMENTO	INSULATION

POS	DESCRIZIONE	DESCRIPTION
07	CIRCUITO HF	HIGH-FREQ. CIRCUIT
08	SUPPORTO ATTACCO TORCIA	THORCH CONNECTOR SUPPORT
10	TRASFORMATORE H.F.	H.F. TRANSFORMER
11	BLOCCAGGIO	LOCKING DEVICE
12	FONDO + PANNELLI	BOTTOM + PANELS
13	CIRCUITO FILTRO	FILTER CIRCUIT

Art. 462

POS	DESCRIZIONE	DESCRIPTION
01	FASCIONE	HOUSING
02	MORSETTIERA	TERMINAL BOARD
03	SUPPORTO MORSETTIERA	TERMINAL BOARD SUP- PORT
04	ATTACCO CAVI	CORDS CONNECTOR
05	PULSANTE	SWITCH
06	ISOLAMENTO	INSULATION
07	CIRCUITO HF	HIGH-FREQ. CIRCUIT
08	SUPPORTO ATTACCO TORCIA	THORCH SUPPORT
10	TRASFORMATORE H.F	H.F. TRANSFORMER
11	BLOCCAGGIO	LOCKING DEVICE
12	FONDO + PANNELLI	BOTTOM + PANELS
13	CIRCUITO FILTRO HF (T)	FILTER CIRCUIT
14	CONNESSIONE	CONNECTION
15	FONDO GRUPPO VALVOLE FE P01 MG	SOLENOID VALVES SUPPORT

POS	DESCRIZIONE	DESCRIPTION
16	GRUPPO PLASMA	PRE-CUTFLOW PLASMA
17	GRUPPO SECONDARIO PRE-CUTFLOW	PRE-CUTFLOW SECONDA- RY UNIT
18	GRUPPO AUSILIARIO PRE-CUTFLOW	PRE-CUTFLOW AUXILIA- RY UNIT
19	GRUPPO RIDUTTORE DI PRESSIONE	PRESSURE REGULATOR UNIT
20	BLOCCAGGIO	LOCKING DEVICE
21	SUPPORTO BLOCCAGGIO	LOCKING DEVICE SUP- PORT
22	DISTANZIALE	SPACER
23	COPERCHIO	COVER
24	PROTEZIONE GRUPPO PLASMA	PLASMA UNIT PROTEC- TION
25	ТАРРО	CAP
26	CONNESSIONE CON CONNETTORE	CONNECTION WITH CON- NECTOR
27	CIRCUITO FILTRO TOUCH SENSING	TOUCH SENSING FILTER CIRCUIT
28	PASSACAVO	CABLE OUTLET

La richiesta di pezzi di ricambio deve indicare sempre: numero di articolo, matricola e data di acquisto della macchina, posizione e quantità del ricambio. When ordering spare parts please always state the machine item and serial number and its purchase data, the spare part position and the quantity.

Art. 470

POS	DESCRIZIONE	DESCRIPTION
01	SUPPORTO CIRCUITO	BOARD SUPPORT
02	CIRCUITO ALIMENTAZIO- NE + SERVIZI AUX	SUPPLY CIRCUIT+ AUX SERVICE
03	CIRCUITO ALIMENTAZIO- NE + SERVIZI	SUPPLY CIRCUIT+ SERVICE
04	FASCIONE	HOUSING
05	RACCORDO	FITTING
06	ELETTROVALVOLA	SOLENOID VALVE
07	RACCORDO PRESE MUL- TIPLE	FITTING
08	RACCORDO PRESE MUL- TIPLE	FITTING
09	PIANO INTERMEDIO	INSIDE BAFFLE
10	NIPPLO	NIPPLE
11	MOTOVENTOLA	MOTOR-FAN
12	CONNESSIONE CON CON- NETTORE	CONNECTO
13	CIRCUITO CONNETTO.	CONNECTOR BOARD
14	CONNESSIONE CON CON- NETTORE	CONNECTOR
15	RACCORDO PRESE MUL- TIPLE	FITTING
16	RACCORDO	FITTING
17	RACCORDO	FITTING

POS	DESCRIZIONE	DESCRIPTION
18	CONNESSIONE TRASDUTTORE	TRANSDUCERS CONNECTOR
19	FONDO+ PANNELLO POSTERIORE	BOTTOM+BACK PANEL
20	GRUPPO RIDUTTORE DI PRESSIONE	PRESSURE REGULATOR
21	PANNELLO ANTERIORE	FRONT PANEL
22	MANOPOLA	KNOB
23	CIRCUITO PANNELLO	PANEL BOARD
24	TUBO GAS	GAS LEAD
25	CONNESSIONE	CONNECTION
26	FASCIONE	HOUSING
27	GRUPPO PLASMA CUTFLOW	PLASMA CUTFLOW LEAD
28	RACCORDO PRESE MULTIPLE	FITTING
29	SUPPORTO VALVOLA	VALVE SUPPORT
30	FONDO + PANNELLO POSTERIORE	BOTTOM+BACK PANEL
31	CONNESSIONE CON CONNETTORE	CONNECTOR
32	PANNELLO ANTERIORE	FRONT PANEL
33	RIDUTTORE	PRESSURE REGULATOR

La richiesta di pezzi di ricambio deve indicare sempre: numero di articolo, matricola e data di acquisto della macchina, posizione e quantità del ricambio. When ordering spare parts please always state the machine item and serial number and its purchase data, the spare part position and the quantity.

CEBORA S.p.A - Via Andrea Costa, 24 - 40057 Cadriano di Granarolo - BOLOGNA - Italy Tel. +39.051.765.000 - Fax. +39.051.765.222 www.cebora.it - e-mail: cebora@cebora.it